Current issue: 58(5)
Many kinds of planning systems have been labelled decision support systems (DSS), but few meet the most important features of real DSSs in planning and control of wood procurement. It has been concluded that many reasons exist to develop DSSs for wood procurement. The purchasing of timber seems to be one of the most promising areas for DSS, because there is no formal structure for these operations and decisions deal with human behaviour. Relations between DSSs and different features of the new approaches in wood procurement are also discussed, and hypotheses for future studies suggested.
This review systematically analyses and classifies research and review papers focusing on discrete event simulation applied to wood transport, and therefore illustrates the development of the research area from 1997 until 2017. Discrete event simulation allows complex supply chain models to be mapped in a straightforward manner to study supply chain dynamics, test alternative strategies, communicate findings and facilitate understanding of various stakeholders. The presented analyses confirm that discrete event simulation is well-suited for analyzing interconnected wood supply chain transportation issues on an operational and tactical level. Transport is the connective link between interrelated system components of the forest products industry. Therefore, a survey on transport logistics allows to analyze the significance of entire supply chain management considerations to improve the overall performance and not only one part in isolation. Thus far, research focuses mainly on biomass, unimodal truck transport and terminal operations. Common shortcomings identified include rough explanations of simulation models and sparse details provided about the verification and validation processes. Research gaps exist concerning simulations of entire, resilient and multimodal wood supply chains as well as supply and demand risks. Further studies should expand upon the few initial attempts to combine various simulation methods with optimization.