This study examined the relationships between forest management planning units and patches formed by forest habitat components. The test area used was a part of Koli National Park in North Karelia, eastern Finland. Forest management planning units (i.e. forest compartments) were defined by using a traditional method of Finnish forestry which applies aerial photographs and compartment-wise field inventory. Patches of forest habitat components were divided according to subjective rules by using a chosen set of variables depicting the edaphic features and vegetation of a forest habitat. The spatial distribution of the habitat components was estimated with the kriging-interpolation based on systematically located sample plots. The comparisons of the two patch mosaics were made by using the standard tools of GIS. The results of the study show that forest compartment division does not correlate very strongly with the forest habitat pattern. On average, the mean patch size of the forest habitat components is greater and the number of these patches lower compared to forest compartment division. However, if the forest habitat component distribution had been considered, the number of the forest compartments would have at least doubled after intersection.
The study proposes a technique which enables the computation of user-defined indices for species diversity. These indices are derived from characteristics, called diversity indicators, of inventory plots, stand compartments, and the whole forest holding. The study discusses the modifications required to be made to typical forest planning systems due to this kind of biodiversity computation. A case study illustrating the use of the indices and a modified forest planning system is provided. In the case study, forest-level species diversity index was computed from the volume of dead wood, volume of broadleaved trees, area of old forest, and between-stand variety.
At the stand level, the area of old forest was replaced by stand age, and variety was described by within-stand variety. All but one of the indicators were further partitioned into two to four sub-indicators. For example, the volume of broadleaved trees was divided into volumes of birch, aspen, willow, and other tree species. The partial contribution of an indicator to the diversity index was obtained from a sub-priority function, determined separately for each indicator. The diversity index was obtained when the partial contributions were multiplied by the weights of the corresponding indicators and then were summed. The production frontiers computed for the harvested volume and diversity indices were concave, especially for the forest-level diversity index, indicating that diversity can be maintained at satisfactory level with medium harvest levels.
Many kinds of planning systems have been labelled decision support systems (DSS), but few meet the most important features of real DSSs in planning and control of wood procurement. It has been concluded that many reasons exist to develop DSSs for wood procurement. The purchasing of timber seems to be one of the most promising areas for DSS, because there is no formal structure for these operations and decisions deal with human behaviour. Relations between DSSs and different features of the new approaches in wood procurement are also discussed, and hypotheses for future studies suggested.
Linear programming (LP) is an important method for allocation of wood inventory stock. It is, for instance, used alone in tactical planning systems, which currently are in wide use at the higher hierarchical level in the functionally decentralized planning of the Finnish forest industry. Unfortunately, LP as a solution method has not been capable of handling spatial data that seem to characterize planning systems in geographical decentralization. In the present study, GIS was used to assimilate data from different wood procurement functions, to calculate transportation distances and cost figures, and to write the data in ASCII files, which were then used as input for the LP model. Using the experiments and methods of GIS on a planning system developed according to participatory planning, the results of this study suggest that the participatory method was faster than the conventional LP method, when solved using actual data. The participatory method was also capable of providing the same global optimum for a wood allocation problem. The implications of these results for improving operational and tactical planning of wood procurement in Finland are discussed.
As a follow-up on acid rain programmes many countries, e.g. Finland, the Netherlands, Sweden, launched national research programmes on Climate Change by the end of the eighties. Other countries centred new programmes on Global Change, such as Belgium, United Kingdom, Germany, Canada. Also, the European Community included the climate issue in the research programme 'Environment & Climate'. The conclusion of the Intergovernmental Panel on Climate Change (IPCC) shifted in the successive assessment reports from possible climate change to actual climate change. The paper describes the first and second phase of the Dutch Climate Change Research Programme, and discusses the future of the programme.
This paper deals with the testing of dynamic stratification for estimating stand level forest characteristics (basal areas, mean diameter, mean height and mean age) for a 117 ha study areas in Finland. The results do not show possibilities to achieve more accurate estimates using only Landsat TM principal components as auxiliary data opposed to static stratification. It was found that in dynamic stratification non-measured observations should be assigned the mean characteristics of the measured observations that belong to the same cube (class) instead of stratification variable classes until a certain limit. If only one principal component is used the number of classes has, however, little influence. Low field values are overestimated and high values underestimated.
The only successful results were obtained using two variables of different origin – the qualitative development stage class and the quantitative 1st principal component. The lowest root mean square error in estimating basal area was 6.40 m2/ha, mean diameter 3.34 cm, mean height 2.65 m and mean age 14.06 years. This increase of stratification accuracy is mainly resulted by the use of development stage class as an auxiliary variable.
The paper discusses the principles of forest management in the state forests of Finland, and the contradictions in choosing between the different land uses. These principles of the forest management are sustainable use of natural resources, economic and effective management, and taking in account nature conservation, protection of environment, recreation services and employment issues in all activities of the Forest Service. Even regional policy affects the management planning in the state forests.
Ten trails, one kilometre each, were evaluated by 15 persons for scenic beauty, recreational value and variety. All trails passed through commercially managed forests dominated by conifers. The trails were first evaluated by viewing computer simulations based on a series of graphical illustrations of forest landscapes, then from a slide show, and finally in the field. In the computer simulation and slide show, landscape pictures along the trail at an interval of 35–40 m were presented for 3–4 seconds. The ranks between slide show and field were slightly more similar than those between simulation and field. The mean correlation of 12 persons between the field ranking and assessment of either computer simulations or slide shows or graphics than scenic beauty or recreational value. Spearman’s rank correlations computed from median scores of a group of 12 peers were clearly better than the average of individual persons varying from 0.6 to 0.9.
The PDF includes an abstract in Finnish
An alternative approach to formulating a forestry goal programming problem is presented. First, single objective optima levels are solved. The Analytical Hierarchy Process is applied in the estimation of a priori weights of deviations from the goal target levels. The ratios of the weights can be interpreted as relative importance of the goals, respectively. The sum of the weighted deviations from all single optima levels associated with the management goals is minimized. Instead of absolute deviations, relative ones are used. A case study problem of forest management planning with several objectives, measured in different units, is analysed.
The PDF includes an abstract in Finnish.
The paper presents a simple model of long-term forest management planning in tree plantations. The model is particularly suitable for developing countries where the research resources are limited. The management plan is prepared in two steps. First, one or several treatment schedules are simulated for each calculation unit (age class, compartment, etc.) over the selected planning period. Second, an optimal combination treatment schedules according to the selected objectives and constraints is searched by mathematical programming. The simulation of growth is based on the prediction of the diameter distribution at the desired time point. All stand characteristics are derived from this distribution. The models needed in the yield simulation can be estimated from temporary sample plots. A case study management plan for 13,000 ha of Pinus kesiya (Royle ex Gordon) plantations in Zambia is presented to demonstrate the system.
The PDF includes an abstract in Finnish.
The economic analysis is based on computer simulations which covered a seedling rotation and three successive coppice rotations. Calculations were carried out for the four site productivity classes in Eucalyptus globulus plantations. The rotation length that maximized the land expectation value is 12–20 years for seedling rotation and 8–16 years for coppice rotations with discounting rates 2–8%. The mean wood production is over 40 m3/ha/a in the best site class and about 10 m3/ha/a in the poorest class with rotation lengths ranging from 10 to over 20 years. Thinnings increase the wood production and land expectation value by a few percentage points. In areas suitable to Eucalyptus globulus growth, the land expectation value is considerably higher in forestry than in agriculture, except in very poor areas or with very high rate of interest.
The PDF includes an abstract in Finnish.
The study presents methods that incorporate the amenity of a forest area into the management planning. The management plan is based on treatment schedules simulated for each compartment over the 20-year planning period. The best combination of treatment schedules is selected by multi-objective optimization. The amenity is divided into two parts: (1) within-stand amenity and (2) the amenity of landscape when viewed afar (distant scene). The within-stand amenity is expressed in terms of adjective sum which is estimated from stand characteristics. The adjective sum of the whole area in a selected year can be taken as an objective or constraining variable of optimization. The assessment of the distant scene is based on computer illustrations which show the predicted temporal change of landscape according to a particular management plan.
The PDF includes a summary in Finnish.
In this paper, the author explains the characteristics of the Japanese forestry planning system and points out some of the problems found therein from the viewpoint of the management of privately-owned forests relating to the economic background and governmental policy.
The forestry planning system is a centralizes type of planning, the planning begins at the top and flows downward and outward the periphery. In order to make this planning system an effective instrument, the district forestry planning founded under the system must approach the problem of how to combine the resources of the forest with the district’s inhabitants and the forest owners; and further, the extent of the effective union of the district and the local timber manufacturing must be examined.
Some of the quantification problems which face the designer of a forest policy program are discussed. Experiences drawn from the preparation of the Forest 2000 program in Finland are used as examples. Both the defining of goals and the choice of means are surveyed and their interconnection in the planning process emphasized.
Length of the regeneration period is a criterion commonly used for comparing different reforestation methods. The time factor should be evaluated using a realistic system for long-term planning. In this paper the preliminary evaluation is made by simplified calculations based on the development series. The slow regeneration method is assumed to be otherwise equal to the rapid one but it has a 5- or 10-years delay at the beginning, and the rotation is thus the final cutting age plus 5- or 10-years delay. Cost of the time delay is taken to be the difference in reforestation costs that makes the rapid and the slow methods equivalent. Calculations are made using zero costs for the slow method; but if the cost of the slow method increases, the critical cost difference decreases very slowly. The final cutting age and the regeneration method must be decided simultaneously. Therefore, the cost of the time delay is presented as a function of final cutting age. By maximizing the average annual revenue, rotation can be even increased if more rapid but more expensive regeneration method is used.
The PDF includes a summary in English.
Forest balance is a comparison between the growing stock volume at the beginning and end of a balance period and the gross increment and drain during that period. The forest balance of Finland during that period 1967-1973 and the increment and drain balance during the period 1953-1977 are used as examples in the paper. Forest balance is a check of the accuracy of basic estimates. If the discrepancy between the calculated growing stock at the end of the balance period and the growing stock estimated by an inventory is great, it calls for improvements in forest inventory methods and timber utilization statistics.
Balance may reveal possibilities for improving the utilization of forest resources. If natural losses are great, increased thinnings and regeneration cuttings of mature and over-mature tree stands increase the supply of timber. If logging losses are great, the efficiency of harvesting should be improved. An overcutting situation calls forth efforts to increase timber production or to decrease the uses of timber in order to avoid overexploitation. If gross increment is greater than the drain there are possibilities to increase harvesting, forest industrial expansion etc.
Forest balance is a way to check and improve the basic estimates of forestry production, to increase the effective use of timber grown in the forest, to commerce policies and measures concerning increment and to control timber utilization on the basis of sustained yield.
The PDF includes a summary in Finnish.
The article describes the results of the studies made in 24 Finnish housing areas. They show that the building density is not as important as the way of building and the site planning, in the view of preserving natural vegetation in the site. Building on slopes was difficult with modern building techniques because of the extensive earthwork required.
This paper was presented in the ‘Man and the Biosphere’ programme Project 2 seminar held on August 24–25 1978 in Hyytiälä research station of University of Helsinki.
The PDF includes a summary in English.
In the densely populated Central Europe, forestry has always had different functions than in Scandinavia or Canada. Today the increasing pressures on the environment and more numerous demands of the people have put emphasis on environmental management and the demands of recreation in forest management practiced in the area. This paper outlines the trends in the utilization of forests in Central Europe, and especially in the Federal Republic of Germany, due to these changing targets. The regulations concerning forestry in Baden-Würtenber, and the forest plan of the Bavarian state forests are used as an example to clarify the principals of forest management and planning.
The planning of timber production in a forestry unit is divisible into two phases. In the first phase, planning provides the decision-maker with a number of possible timber production policies; these policies define the production possibility boundary. After the decision-maker has chosen one of these policies, planning moves to the second phase, in which a detailed programme is prepared with a view to meeting the requirements of the timber production policy accepted. The paper indicates one possibility of solving these two tasks simultaneously. In the first phase, the solution of the primal linear programming problem is employed and in the second phase the respective dual or shadow price solution.
The PDF includes a summary in English.
The study deals with economic significance of forest landscape planning models used in regional planning in Finland. The »judge»-method is used among professional foresters working on private forestry boards in Southern Finland to define their view of what would be moderate level of costs of landscape management for private forest owners. A sample of 154 forest professionals working in district forestry boards in Southern Finland was sent a sociological questionnaire.
It was possible to form three hierarchical moderation classes by statistical grouping of judgement distributions. Prolongations in rotation ages and restrictions concerning ditching of forested bogs, forest read building and clear-cutting were considered the most immoderate models. Rather or wholly insignificant were evaluated such management models, which mean restrictions in »old fashioned» methods or which are already used in practice.
The PDF includes a summary in English.
The most effective work organization will be used as a goal in minimizing of logging costs. Some type of problem approach is usually utilized. The concept of the ideal system offers a possibility to get guidance in this difficult task. The idea of an ideal system is based on the fact that an ideal system, even imagined, can be utilized for any purpose. There are checklists in handbooks to accomplish the four existing steps: define of function, design ideal, develop optimum and deliver results.
In this paper two special cases are taken up to illustrate the concept itself, and it’s use in design of forestry work organizations. There were found no such reasons which could limit or even prevent the use of this method for forest technological purposes. That is why the author believes the method to give better results than any other customary approach.
The PDF includes a summary in English.
This paper describes different methods of long-term forecasts in forest management planning with a special attention on intention forecasts for a total forest property or district. Methods for calculating the sustained yield on the basis of the actual increment or the yearly area cut are discussed. It is concluded that a better estimate of the sustained yield is obtainable by the application of a long-term forecast technique. Forecasts for 100 years should not be viewed as plans, but as a background for making short-term decisions. Some of the long-term-type programmes, such as the programme of maximum profit, sustained yield in volume and in money are discussed briefly.
It is pointed out that there is often present a conflict between the various elements of the policy formulated by a forest owner. This leads to the conclusion that the calculations of the profitability of single projects may be misleading.
The precision of a long-term forecast is discussed, and how under certain assumptions the error of the allowable cut is influenced by errors in area, volume, age etc. It is shown that the precision in area and volume is more important in this connection than, say, the precision in increment. In conclusion, existing knowledge, methods and equipment for calculations constitute a basis for long-term forecasts which make them an important instrument in forest management planning.
The PDF includes a summary in English.
Silva Fennica Issue 64 includes presentations held in 1947 in the third professional development courses, arranged for foresters working in the public administration. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service. Two of the presentations were published in other publications than Silva Fennica issue 64.
This presentation discusses different ways of organizing felling cycle, forest management practices used in the forests of Finnish forest research institute, and how good practices developed in the institue could be applied in state forests.
Two lines can be defined in the management planning for the State Forests of Finland: 1) general planning for regions and inspectional sub-regions based on forest inventory, and 2) management plans for individual districts based on the revision of each district after 10–15 years. Long-term planning is has recently been alleviated by several new methods, such as stock-development forecast and yield tables.
A stock-development forecast and cutting budget were prepared separately for each State Forest region. The present growing stock was based on the data collected in the inventory in 1951–1955. Desirable stock for each region was calculated. The methods to calculate total cut during near future, allowable cut, allowable cut by timber products, the long-term development of the allowable cut, and conditions for realizing the allowable cut are presented in the paper.
The development of the growing stock towards a desirable condition requires also realization of a silvicultural program. Because the Finnish forest industry is expanding vigorously, the amount of the allowable cut on a sustained basis must be estimated carefully. Otherwise the demand for wood may exceed the supply. Though there are many sources of error in preparing a long-term cutting budget, it was considered necessary for State Forestry. An approximate estimate of the largest cut on a sustained basis and a program of silvicultural measures necessary to increase the yield gradually has been worked out.
The PDF includes a summary in English.
The aim of the study was to develop a method for calculating a cutting budget that is adapted to the present forest management practices. The cutting budget determines the volume of annual cuttings for a forest holding in a certain period of time. Effect of fellings on the cutting budget depends on the cutting methods used. The study aimed at proving that growth of the forest can be estimated based on growing stock and structure of the forests for a certain time period. Accordingly, adequate drain can be defined in advance. The cutting budget is based on age-class distribution of the forest holding, which is most applicable for even-aged forestry. Calculation is based on area of the forest land and estimated volume of the growing stock. Also, the quality of the forest soil can be taken into account when age-class distribution is used. A suitable period for estimating a cutting budget is suggested to be 20 years, which is divided in two 10-year periods. The cutting budget it is included in a forestry plan. An example of a cutting plan based on the method is presented.
The PDF includes a summary in German.
The paper examines the needs, premises and criteria for effective public participation in tactical forest planning. A method for participatory forest planning utilizing the techniques of preference analysis, professional expertise and heuristic optimization is introduced. The techniques do not cover the whole process of participatory planning, but are applied as a tool constituting the numerical core for decision support. The complexity of multi-resource management is addressed by hierarchical decision analysis which assesses the public values, preferences and decision criteria toward the planning situation. An optimal management plan is sought using heuristic optimization. The plan can further be improved through mutual negotiations, if necessary. The use of the approach is demonstrated with an illustrative example. Its merits and challenges for participatory forest planning and decision making are discussed and a model for applying it in general forest planning context is depicted. By using the approach, valuable information can be obtained about public preferences and the effects of taking them into consideration on the choice of the combination of standwise treatment proposals for a forest area. Participatory forest planning calculations, carried out by the approach presented in the paper, can be utilized in conflict management and in developing compromises between competing interests.
The study deals with medium-term economic planning for a multi-branched farm enterprise on which agriculture and forestry plus associated livelihoods are practiced. A personal enterprise consisting of the earning economy sphere of an individual person or family is found to provide a suitable point of departure and framework for farm enterprise planning. In this case, the consumer economy cash withdrawals of the entrepreneur and members of his family are linked to the planning model. In a combined planning model of this type serving the management of the agricultural entrepreneur’s entire economy, the problems of both the real process (chiefly pertaining to agriculture and forestry) and the financial process are solved simultaneously and optimally with regard to the goal function, taking into consideration the model’s production factor, financing, taxation and other such constraints. The model also takes into account the possibility of investing money in financial targets (e.g. governments bonds and stocks).
The study consists of constructing a multi-periodic, combined planning model in the form required by linear optimization. The model is applied to the economic planning of a farm and its adjoining woodlot located in south-western Finland. In order to simplify the presentation of the matter, the case calculation is made to apply to a planning period only two years; the time span in the formulae used in the model is actually ten years. For the same reason, the number of treatment alternatives for the stands in the woodlot may appear to be unrealistically small.
Within the planning period the model does not require the use of the calculation rate of interest typical of partial models; instead, it itself provides the solution to where to invest and what the financing costs will be. An essential feature of the model is that the plan for the entire farm is not compiled by adapting to one another the plans made separately for farming, forestry etc., and financing; instead, the entire real process and financial process plan are obtained as the solution for the model.
The PDF includes a summary in Finnish.
The applicability of operations research, database management systems and geographic information systems for decision-making in long-distance transport of wood in the Saimaa area in Central Finland were reviewed. Due to the complexity of the transport problem a geographic information system is the most applicable. However, investment in such a system for only long-distance transport decision-making is unjustified. A spatial database – heuristic programming system was developed. It was applied to studying the competitiveness and search for possible areas for rationalization of water transport in particular and long-distance transport in general. The system proved to be a useful aid in long-distance transport research. Also, with the increased use of computers for planning at the field level, a system similar to that described could be a powerful managerial aid.
The PDF includes a summary in Finnish.
Production of timber in forest stands is described by a production function. The variable inputs of the function are land and growing stock and the output is the annual value growth. The partial derivatives of this production function express the marginal productivity of the land and of auction function express the marginal productivity of the land and of the growing stock. These marginal productivities can be utilized for determination of the need of regeneration and thinning. The stand should be regenerated when the marginal productivity of the land falls below the annual rent of a unit area of open land and thinned when the marginal productivity of the growing stock falls below the annual rent of one unit of growing stock.
The PDF includes a summary in Finnish.
The aim of this study was to develop cutting budget methods for a forest undertaking. Cutting budget provides information on the future income from the forest undertaking, and on the development of the forest.
Two cutting budget models have been developed, by the application of simulation and linear programming. Both of the models are deterministic in nature, i.e. there is only one possible outcome once the stated input information has been given. To make the models simpler, it has been assumed that thinning and clear cutting with reforestation are the only activities that can occur in the forest. The models are directly applicable only to forests consisting of even-aged Scots pine stands at three different forest types. However, they can easily be extended to cover forests comprising several tree species and more sites.
In the light of this study, simulation seems today to be more appropriate than linear programming in the preparation of cutting budgets. However, the increasing capacity of computers may even in the near future make linear programming quite competitive, especially as if it is borne in mind that the theoretical basis of linear programming is much firmer than that of simulation. The most advisable cutting budget method might consist of a combination of simulation and linear programming. Simulation could be employed to find a rough cutting schedule, and linear programming to test and improve the solution.
The PDF includes a summary in Finnish.
Forest disturbances challenge our ability to carefully plan for sustainable use of forest resources. As forest disturbances are stochastic, we cannot plan for the disturbance at any specific time or location. However, we can prepare for the possibility of a disturbance by integrating its potential intensity range and frequency when developing forest management plans. This study uses stochastic programming to integrate wind intensity (wind speed) and wind event frequency (number of occurrences) into the forest planning process on a small coastal Finnish forest landscape. We used a mechanistic model to quantify the critical wind speed for tree felling, with a Monte Carlo approach to include wind damage and salvage logging into forest management alternatives. We apply a stochastic programming model to explore two objectives: maximizing the expected forest net present value or maximizing the even-flow of income. To assess the effects of improper wind risk assumptions in planning, we compare the results when optimizing for correct versus incorrect wind intensity and frequency assumptions. When maximizing for net present value, the impacts of misidentifying wind intensity and frequency are minor, likely due to harvests planned immediately as trees reach maturity. For the case when maximizing even-flow of income, incorrectly identifying wind intensity and frequency severely impacts the ability to meet the required harvest targets and reduces the expected net present value. The specific utility of risk mitigation therefore depends on the planning problem. Overall, we show that incorporating wind disturbances into forest planning can inform forest owners about how they can manage wind risk based on their specific risk preferences.
Carbon sequestration and income generation are competing objectives in modern forest management. The climate commitments of many countries depend on forests as carbon sinks which must be quantified, monitored, and projected into the future. For projections we need tools to model forest development and perform scenario analyses to assess future carbon sequestration potentials under different management regimes, the expected net present value of such regimes, and possible impacts of climate change. We propose a scenario analysis software tool (GAYA 2.0) that can assist in answering these types of questions using stand level simulations, detailed carbon flow models and an optimizer. This paper has two objectives: (1) to describe GAYA 2.0, and (2) demonstrate its potential in a case study where we analyze the forest carbon balance over a region in Norway based on national forest inventory sample plots. The tool was used to map the optimality front between the carbon benefit and net present value. We observed changes in net present value for different levels of carbon benefit as well as changes in optimal management strategies. We predicted future changes in several forest carbon pools as well as albedo and illustrated the impact of gradual increase in forest productivity (i.e., due to climate warming). Having been updated and modernized from its previous version with increased attention to forest carbon and energy fluxes, GAYA 2.0 is an effective tool that offers multiple opportunities to perform various types of scenario analyses in forest management.
An important modifier of forests and forestry practices is browsing by cervids. As high populations of moose (Alces alces L.) cause extensive forest damage in the Fennoscandian boreal forests, models should be able to predict the susceptibility of projected forest structures to browse damage. We augmented the European Forestry Dynamics Model (EFDM) for the area of seedling stands damaged by moose. The augmented model was tested in projecting both forest resources and moose damage for 18 million hectares of forest land in Finland, based on input data from the National Forest Inventory (NFI). Modeling the area of seedling stands damaged as a function of moose population density, forest characteristics, and region-specific interactions of these variables was found to work realistically for 30 years, predicting that the area of seedling stands damaged by moose would increase by up to a third from the last NFI observation. Our work lays the groundwork for modeling consequential, large-scale ecological and socio-economic effects of moose browsing.
Bilberry (Vaccinium myrtillus L.) and lingonberry (V. vitis-idaea L.) can be a part of healthy diet and are important for many animals. Two approaches are described to assessing their vegetation cover and berry yield via national forest inventory (NFI) observations. The aim was to provide estimates and predictions of the abundance and yield of the species at regional and national levels in Finland and Sweden. In Finland, the model-based predictions are used in evaluating the impacts of cutting intensity on forest berries needed in forest-related decision making. In Sweden, seasonal inventory-based estimates are used to evaluate the annual national and regional berry yields, and in a forecasting system aimed at large public and berry enterprises. Based on the NFI sample plots measured between 2014 and 2018, the total annual yields are estimated to be 208 Mkg of bilberry and 246 Mkg of lingonberry on productive forest land (increment at least 1 m3 ha–1 year–1) in Finland, and 336 and 382 Mkg respectively in Sweden (average of NFI inventories in 2015–2019). The predicted development of berry yields is related to the intensity of cuttings in alternative forest management scenarios: lower removals favoured bilberry, and higher removals lingonberry. The model-based method describes the effects of stand development and management on berry yields, whereas the inventory-based method can calibrate seasonal estimates through field observations. In providing spatially and timely more accurate information concerning seasonal berry yields, an assessment of berry yields should involve the elements of both inventory-based and model-based approaches described in this study.
To assess the quality of results obtained from heuristics through statistical procedures, a number of independently generated solutions to the same problem are required, however the knowledge of how many solutions are necessary for this purpose using a specific heuristic is still not clear. Therefore, the overall aims of this paper are to quantitatively evaluate the effects of the number of independent solutions generated on the forest planning objectives and on the performance of different neighborhood search techniques of simulated annealing (SA) in three increasing difficult forest spatial harvest scheduling problems, namely non-spatial model, area restriction model (ARM) and unit restriction model (URM). The tested neighborhood search techniques included the standard version of SA using the conventional 1-opt moves, SA using the combined strategy that oscillates between the conventional 1-opt moves and the exchange version of 2-opt moves, and SA using the change version of 2-opt moves. The obtained results indicated that the number of independent solutions generated had clear effects on the conclusions of the performances of different neighborhood search techniques of SA, which indicated that no one particular neighborhood search technique of SA was universally acceptable. The optimal number of independent solutions generated for all alternative neighborhood search techniques of SA for ARM problems could be estimated using a negative logarithmic function based on the problem size, however the relationships were not sensitive (i.e., 0.13 < p < 0.78) to the problem size for non-spatial and URM harvest scheduling problems, which should be somewhat above 250 independent runs. The types of adjacency constraints did moderately affect the number of independent solutions necessary, but not significantly. Therefore, determining an optimal number of independent solutions generated is a necessary process prior to employing heuristics in forest management planning practices.
Environmental planning for of the maintenance of different conservation objectives should take into account multiple contrasting criteria based on alternative uses of the landscape. We develop new concepts and approaches to describe and measure conflicts among conservation objectives and for resolving them via multiobjective optimization. To measure conflicts we introduce a compatibility index that quantifies how much targeting a certain conservation objective affects the capacity of the landscape for providing another objective. To resolve such conflicts we find compromise solutions defined in terms of minimax regret, i.e. minimizing the maximum percentage of deterioration among conservation objectives. Finally, we apply our approach for a case study of management for biodiversity conservation and development in a forest landscape. We study conflicts between six different forest species, and we identify management solutions for simultaneously maintaining multiple species’ habitat while obtaining timber harvest revenues. We employ the method for resolving conflicts at a large landscape level across a long 50-years forest planning horizon. Our multiobjective approach can be an instrument for guiding hard choices in the conservation-development nexus with a perspective of developing decision support tools for land use planning. In our case study multiple use management and careful landscape level planning using our approach can reduce conflicts among biodiversity objectives and offer room for synergies in forest ecosystems.
A new sampling design, the local pivotal method (LPM), was combined with the micro stand approach and compared with the traditional systematic sampling design for estimation of forest stand variables. The LPM uses the distance between units in an auxiliary space – in this case airborne laser scanning (ALS) data – to obtain a well-spread sample. Two sets of reference plots were acquired by the two sampling designs and used for imputing data to evaluation plots. The first set of reference plots, acquired by LPM, made up four imputation alternatives (varying number of reference plots) and the second set of reference plots, acquired by systematic sampling design, made up two alternatives (varying plot radius). The forest variables in these alternatives were estimated using the nonparametric method of most similar neighbor imputation, with the ALS data used as auxiliary data. The relative root mean square error (RelRMSE), stem diameter distribution error index and suboptimal loss were calculated for each alternative, but the results showed that neither sampling design, i.e. LPM vs. systematic, offered clear advantages over the other. It is likely that the obtained results were a consequence of the small evaluation dataset used in the study (n = 30). Nevertheless, the LPM sampling design combined with the micro stand approach showed potential for improvement and might be a competitive method when considering the cost efficiency.
The nature areas surrounding the capital of Norway (Oslomarka), comprising 1 700 km2 of forest land, are the recreational home turf for a population of 1.2 mill. people. These areas are highly valuable, not only for recreational purposes and biodiversity, but also for commercial activities. To assess the impacts of the challenges that Oslo municipality forest face in their management, we developed four optimization problems with different levels of management constraints. The constraints consider control of harvest level, guarantee of minimum old-growth forest area and maximum open area after final harvest. For the latter, to date, no appropriate analyses quantifying the impact of such a constraint on economy and biomass production have been carried out in Norway. The problem solved is large due to both the number of stands and number of treatment schedules. However, the model applied demonstrated its relevance for solving large problems involving maximum opening areas. The inclusion of maximum open area constraints caused 7.0% loss in NPV compared to the business as usual case with controlled harvest volume and minimum old-growth area. The estimated supply of 20-30 GWh annual energy from harvest residues could provide a small, but stable supply of energy to the municipality.