Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'orthotropic fracture'

Category : Research article

article id 415, category Research article
Sandhya Samarasinghe, Don Kulasiri. (2004). Stress intensity factor of wood from crack-tip displacement fields obtained from digital image processing. Silva Fennica vol. 38 no. 3 article id 415. https://doi.org/10.14214/sf.415
Keywords: Pinus radiata; wood; fracture toughness; stress intensity factor; digital image correlation; orthotropic fracture theory
Abstract | View details | Full text in PDF | Author Info
Stress intensity factor of radiata pine (Pinus radiata) in Tangential-Longitudinal opening mode was determined from crack-tip displacement fields obtained from digital image correlation in conjunction with orthotropic fracture theory. For lower loads, experiments agreed with the linear elastic fracture theory but for higher loads, stress intensity factor and load relationship was nonlinear. For 41% of the specimens tested, tip-displacement based stress intensity factor agreed with that based on the ASTM standard formula for lower loads but deviated for higher loads closer to failure. The tip displacement plots showed that the nonlinear behaviour is due to large displacements which we attributed to large plastic deformations and/or micro-cracking in this region. The other 59% specimens showed a similar trend except that the crack-tip based stress intensity factor was consistently higher than the value obtained from the standard formula. The fracture toughness from tip displacements was larger than the standard values for all specimens and the two were related by a logarithmic function with an R2 of 0.61. The study also established that fracture toughness increases with the angle of inclination of the original crack plane to the Radial Longitudinal plane.
  • Samarasinghe, Lincoln University, P.O. Box 84, Canterbury, New Zealand E-mail: ss@nn.nz
  • Kulasiri, Lincoln University, P.O. Box 84, Canterbury, New Zealand E-mail: kulasird@lincoln.ac.nz (email)
article id 630, category Research article
S. Samarasinghe, G. D. Kulasiri. (2000). Displacement fields of wood in tension based on image processing: Part 2. Crack-tip displacements in mode-I and mixed-mode fracture. Silva Fennica vol. 34 no. 3 article id 630. https://doi.org/10.14214/sf.630
Keywords: wood; digital image correlation; fracture modes; orthotropic fracture; tip displacement
Abstract | View details | Full text in PDF | Author Info
Near tip displacement fields for tensile loaded cracked rubber and wood with a crack parallel-, perpendicular-to-grain, and a parallel-to-grain crack inclined 30°, 45°, and 60° to the load axis were obtained from digital image correlation (DIC). Theoretical displacements were also obtained for rubber and wood using isotropic and orthotropic fracture theory, respectively. The results showed that DIC can reveal fine details of the nature of displacements and the influences of crack tip in both rubber and wood. Experimental crack tip displacements for wood compare well with theory; particularly, when load is perpendicular-to-grain. Some anomalies were found in the tip displacements in the direction of the tracheids due to the unique nature of their behaviour not accounted for by theory. Mixed-mode crack tip displacement fields for wood clearly showed the increasing influence of crack angle on the displacements, and the displacements perpendicular to crack compared very well with theory. The displacements parallel to crack showed some variations owing to the involvement of tracheids.
  • Samarasinghe, Lincoln University, Appl. Computing, Mathematics and Statistics Group, P.O. Box 84, Canterbury, New Zealand E-mail: ss@nn.nz
  • Kulasiri, Lincoln University, Appl. Computing, Mathematics and Statistics Group, P.O. Box 84, Canterbury, New Zealand E-mail: kulasird@tui.lincoln.ac.nz (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles