Current issue: 58(4)
Scots pine (Pinus sylvestris L.) is a resilient, wide spread species. This paper reports on the xylem and phloem cell formation process, before and after, the species was put under artificial stress by stem girdling. Microcore method was applied to a healthy control group and a standing group of girdled trees within an 80-year-old pine forest for two consecutive growing seasons (2013 and 2014). The stem girdling was applied in the middle of the first growing season (July 2013). Cambial activity timings (onset and cessation of cell division), cell formation intensity, cell differentiation, and the dynamics of the annual radial increment in the stem were analyzed. Cambial activity was inhibited and eventually ceased below the stem girdling immediately after the removal of the strip. Therefore, no latewood tracheids were formed. However, above the stem girdling and in the control trees, cell formation and tissue differentiation continued until the end of the growing season, with the girdled trees moving at a less intensive pace but for a longer period of time. During the following growing season (2014), the cambial zone was reactivated only above the stem girdling, not below, and eventually the girdled trees died. In 2014, the onset of the cambial activity was delayed and the division rate of the cells was slower in the girdled trees. Furthermore, the girdled trees formed less phloem cells than the control trees.
Various environmental conditions (heat waves and drought events) strongly affect leaf and xylem phenology. Disentangling the influence of temperature, precipitation and soil moisture content (AWR) on the forest productivity remains an important research area. We analyzed the impact of climate variability on the leaf phenology (10 sample trees) and radial growth (17 sample trees) of European beech (Fagus sylvatica L.). The study was conducted on 130-year-old European beech trees growing in a temperate forest stand in the Czech Republic. Detailed 20-year phenological monitoring was performed at the study site (1992–2011). As expected, leaf phenological events were mainly driven by the growing season temperatures. Leaf unfolding was highly affected positively by spring temperatures and the top-layer (to 40 cm) AWR in March. The correlation of tree-ring width with the interpolated climate data was positive significant for the growing season AWR and precipitation signal. Furthermore, the water availability in the top soil layer was found to be an important predictor of tree growth and extremely low growth occurrence. The extended phenological growing season, which was caused by a temperature increase, was not followed by an increased tree-ring width. The examined relationships point out the significance of the water availability in the top soil layer in European beech stands.
The research was carried out in unmanaged middle-aged (75–85 years) Northern taiga Scots pine (Pinus sylvestris L.) forests in the Kola peninsula. It was established that forests of green moss-lichen and green moss site types are characterised by a predominance (65–70% by stand volume) of moderately and strongly weakened trees. Trees of differing vitality have significant differences in annual increment. Healthy trees had a radial increment (RI) 70–75% greater than that of dying trees, and a basal area increment (BAI) 85–90% greater. The dynamics of the RI and BAI of Scots pine trees for the 70-year period (from 1945 to 2015) is different. The RI of all individuals in the communities studied decreases consistently. The decrease is expressed more strongly in green moss Scots pine forests (80–95% from 1945 to 2015) compared to green moss-lichen forests (60–80%); it manifests itself more in strongly weakened and dying individuals (75–95%) than in healthy and moderately weakened ones (60–80%). Annual basal area increment in green moss Scots pine forests increases by 45–65% from stand establishment until the trees are 25 to 35 years old and subsequently decreases by 50–80% to 70–80 years of age. In green moss-lichen pine forests the BAI of Scots pine remains rather stable in healthy and moderately weakened trees and decreases in strongly weakened and dying individuals by 45% and 75–80%, respectively throughout the studied period.