Current issue: 58(4)
According to the literature, the mechanical strength of the green reaction wood of softwood species (compression wood) is greater than that of normal wood. Drying increases the mechanical strength but less in reaction wood than in normal wood. In particular, the tensile strength along the grain and the impact strength are lower than in normal wood. The compression strength and possibly bending strength are greater, however.
The properties of the reaction wood of hardwood species (tension wood) differ from those of softwoods. When green, all mechanical properties are weaker than those of normal wood. When dried, the tensile strength and impact strength are better and compression strength lower. There is no great difference in the bending strength.
When the higher density of reaction wood is not taken into account and there are no impact forces, the mechanical strength of reaction wood in sawn goods etc. does not differ so much from that of normal wood. The harmful effect of knots, for example, can in practice be much greater.
The PDF includes a summary in English.
Compression wood of the tree species studied in this investigation, Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and common juniper (Juniperus communis L.), was found to be characterized in its cross section by the thick walls and rounded shape of its tracheids and the profuse occurence of spaces. Tension wood of aspen (Populus tremula L.) and alder (Alnus incana (L.) Moench) was found in microscopic examination to be characterized by the gelatinous appearance of the wood fibres, by its small cell cavities and by the thickness and buckling of the inner layer of the cecondary wall. Tracheids of the compression wood were found to have shorter length than normal on an average, while the tension wood fibres were found to be longer.
The microchemical studies suggest a higher than normal lignin content in compression wood and lower than normal lignin content in tension wood, as compared to normal wood. The reverse would be true for the cellulose contents. Volume weight of absolute dry reaction wood was distinctly higher than that of normal wood. The longitudinal shrinkage of reaction wood, particularly of compression wood, is several times that of normal wood. Transversal shrinkage of compression wood is much less than normal wood. Swelling tests revealed pushing effect of compression wood on elongation and pulling effect on tension wood on constraction. Volume shrinkage of compression wood is less than that of normal wood, in contrast to tension wood. The strength of compression wood in absolutely dry condition was nearly same as that of normal wood.
The PDF includes a summary in English.
The investigation concerns with the strength of the eccentric growth accompanying formation of tension wood in silver birch (Betula pendula Roth.) and downy birch (Betula pubescens Ehrh.), behaviour of wood in wood-working machines and its macroscopic characteristics, its microscopic and sub-microscopic structure, chemical composition, resistance against certain chemicals, physical properties, and the strength characteristics of wood.
The most detrimental properties of tension wood used in wood working industry are high longitudinal shrinkage, warping, twisting and checking. The wooliness of the cut is unwanted, for instance, in plywood and furniture. In pulp industry tension wood is better raw material than normal wood because it yields more and purer cellulose than normal wood. However, it has poorer strength properties.
The PDF includes a summary in English.