Current issue: 58(4)
Snow and rime, attached to branches of conifers, seriously damaged forests in a region of 11,000 km2 in Southern Finland during a passage of two nearly occluded cyclones in 1959. The roles of different weather elements were studied by considering the variations occurring in them over this region and its surroundings. Damage occurred only inside an accentuated pattern of copious orographic precipitation. Precipitation only became attached to and retained on branches in such parts of the area where temperature varied on both sides of freezing point but did not exceed 0.6°C. Furthermore, damage only occurred in forests where rime formed (above a certain level and on sloping towards the prevailing wind).
The PDF includes a summary in English.
Fast-growing hybrids of Populus L. have an increasing importance as a source of renewable energy and as industrial wood. Nevertheless, the long-term sensitivity of Populus hybrids to weather conditions and hence to possible climatic hazards in Northern Europe have been insufficiently studied, likely due to the limited age of the trees (short rotation). In this study, the climatic sensitivity of ca. 65-year-old hybrid poplars (Populus balsamifera L. × P. laurifolia Ledeb.), growing at two sites in the western part of Latvia, and ca. 55-year-old hybrid aspens (Populus tremuloides Michx. × P. tremula L.), growing in the eastern part of Latvia, have been studied using classical dendrochronological techniques. The high-frequency variation of tree-ring width (TRW) of hybrid poplar from both sites was similar, but it differed from hybrid aspen due to the diverse parental species and geographic location of the stands. Nevertheless, some common tendencies in TRW were observed for both hybrids. Climatic factors influencing TRW were generally similar for both hybrids, but their composition differed. The strength of climate-TRW relationships was similar, but the hybrid poplar was affected by a higher number of climatic factors. Hybrid poplar was sensitive to factors related to water deficit in late summer in the previous and current years. Hybrid aspen was sensitive to conditions in the year of formation of tree-ring. Both hybrids also displayed a reaction to temperature during the dormant period. The observed climate-growth relationships suggest that increasing temperatures might burden the radial growth of the studied hybrids of Populus.