Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Winfried Kurth

Category : Article

article id 5626, category Article
Winfried Kurth, Branislav Sloboda. (1997). Growth grammars simulating trees – an extension of L-systems incorporating local variables and sensitivity. Silva Fennica vol. 31 no. 3 article id 5626. https://doi.org/10.14214/sf.a8527
Keywords: tree growth; competition; allocation; morphology; tree architecture; L-systems; sensitivity; tree structure
Abstract | View details | Full text in PDF | Author Info

The rule-based formal language of "stochastic sensitive growth grammars" was designed to describe algorithmically the changing morphology of forest trees during their lifetime under the impact of endogenous and exogenous factors, and to generate 3-D simulations of tree structures in a systematic manner. The description in the form of grammars allows the precise specification of structural models with functional components. These grammars (extended L-systems) can be interpreted by the software GROGRA (Growth grammar interpreter) yielding time series of attributed 3-D structures representing plants. With some recent extensions of the growth-grammar language (sensitive functions, local variables) it is possible to model environmental control of shoot growth and some simple allocation strategies, and to obtain typical competition effects in tree stands qualitatively in the model.

  • Kurth, E-mail: wk@mm.unknown (email)
  • Sloboda, E-mail: bs@mm.unknown

Category : Research article

article id 1019, category Research article
Michael Henke, Stephan Huckemann, Winfried Kurth, Branislav Sloboda. (2014). Reconstructing leaf growth based on non-destructive digitizing and low-parametric shape evolution for plant modelling over a growth cycle. Silva Fennica vol. 48 no. 2 article id 1019. https://doi.org/10.14214/sf.1019
Keywords: growth modelling; non-destructive data acquisition; automated data extraction; image processing tool; leaf shape modelling; reusable modules; Populus x canadensis
Highlights: A complete pipeline for plant organ modelling (at the example of poplar leaves) is presented, from non-destructive data acquisition, over automated data extraction, to growth and shape modelling; Leaf contour models are compared; Resulting “organ” modules are ready for use in FSPMs.
Abstract | Full text in HTML | Full text in PDF | Author Info
A simple and efficient photometric methodology is presented, covering all steps from field data acquisition to binarization and allowing for leaf contour modelling. This method comprises the modelling of area and size (correlated and modelled with a Chapman-Richards growth function, using final length as one parameter), and four shape descriptors, from which the entire contour can be reconstructed rather well using a specific spline methodology. As an improvement of this contour modelling method, a set of parameterized polynomials was used. To model the temporal kinetics of the shape, geodesics in shape spaces were employed. Finally it is shown how this methodology is integrated into the 3D modelling platform GroIMP.
  • Henke, Department Ecoinformatics, Biometrics & Forest Growth, University of Göttingen, 37077 Göttingen, Germany E-mail: mhenke@uni-goettingen.de (email)
  • Huckemann, Institute of Mathematical Stochastics, University of Göttingen, 37077 Göttingen, Germany E-mail: huckeman@math.uni-goettingen.de
  • Kurth, Department Ecoinformatics, Biometrics & Forest Growth, University of Göttingen, 37077 Göttingen, Germany E-mail: wk@informatik.uni-goettingen.de
  • Sloboda, Department Ecoinformatics, Biometrics & Forest Growth, University of Göttingen, 37077 Göttingen, Germany E-mail: bslobod@web.de
article id 510, category Research article
Helge Dzierzon, Risto Sievänen, Winfried Kurth, Jari Perttunen, Branislav Sloboda. (2003). Enhanced possibilities for analyzing tree structure as provided by an interface between different modelling systems. Silva Fennica vol. 37 no. 1 article id 510. https://doi.org/10.14214/sf.510
Keywords: tree growth; mathematical models; simulation systems; forest growth; analysis tools
Abstract | View details | Full text in PDF | Author Info
In recent years, many different advanced mathematical models and simulation systems for tree and forest growth have been developed. We show a possibility to extend analysis tools for measured and simulated plants using a data interface between the simulation model LIGNUM and the multifunctional software system GROGRA. Both systems were developed by different teams. To demonstrate the enhanced possibilities for analyzing a LIGNUM tree, several examples are given. In these examples three different approaches for analysis are applied to measured and simulated trees: Fractal dimension, deduction of tapering laws, and water potential patterns obtained from simulation of waterflow by the specialized software HYDRA. Conclusions for the interfacing and comparison of different modelling tools are drawn.
  • Dzierzon, Institut für Forstliche Biometrie und Informatik, Universität Göttingen, Büsgenweg 4, D-37077 Göttingen, Germany E-mail: hdzierz@gwdg.de (email)
  • Sievänen, The Finnish Forest Research Institute, Vantaa Research Centre, P.O. Box 18, FIN-01301 Vantaa, Finland E-mail: rs@nn.fi
  • Kurth, Institut für Informatik, Brandenburgische Technische Universität Cottbus, P.O. Box 101344, D-03013 Cottbus, Germany E-mail: wk@nn.de
  • Perttunen, The Finnish Forest Research Institute, Vantaa Research Centre, P.O. Box 18, FIN-01301 Vantaa, Finland E-mail: jp@nn.fi
  • Sloboda, Institut für Forstliche Biometrie und Informatik, Universität Göttingen, Büsgenweg 4, D-37077 Göttingen, Germany E-mail: bs@nn.de

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles