Current issue: 58(4)
Possibilities of distance-independent and -dependent competition indices to describe the competition stress of an individual tree was studied in Southern Finland. Five half-sib open-pollinated families and one check lot of Scots pine (Pinus sylvestris L.) was used as study material in order to analyse competitive interactions of crown form and stand density variation. Almost all competition indices correlated strongly with radial increment. Thus distance-independent indices were adequate to describe competition in young row plantations, where distance effects between trees were implicitly eliminated. Correlations between indices and height increment were not significant. Along with the increase in competition, the width and length of the crown and the diameter increment of the stem of some narrow-crowned families decreased slowly compared to wide-crowned families.
A simple, manually-operated and easily portable device for sampling volumetric soil cores to a depth of 100 cm with a minimum soil disturbance is described. The device consists of a sample tube, a sampler and an extension tube. A dead blow nylon mallet is used to force the sampler into the soil and a small winch attached to an aluminium tube pulls the sampler from the soil. The total weight of the equipment (sampler, mallet and winch) is 18.5 kg and may be carried in the trunk of a small car. Sampling is easily done by one person in good physical condition but four-handed operation is recommended as more efficient. The sampling device has been in heavy use during the summers of 1993–95 when several hundred soil cores have been extracted on various sites all over Finland.
Relationships between bulk density and organic matter (OM) content, textural properties and depth are described for forested mineral soils from Central and Northern Finland. Core samples were taken of 0–5, 30–35 and 60–65 cm layers at 75 plots. Three measures of bulk density were calculated: the bulk density of the < 20 mm fraction (BD20), the bulk density of the < 2 mm fraction (BD2), and laboratory bulk density (BDl). BDl was determined from the mass of a fixed volume of < 2 mm soil taken in the laboratory. All three measures of bulk densities were strongly correlated with organic matter content (r ≥ -0.63). Depth and gravel (2–20 mm) content (in the case of BD2) were also important variables. BDl was sensitive to clay contents > 7% but did significantly improve the prediction of both BD2 and BD20 in coarse soils (clay contents ≤ 7%). Predictive models were derived for coarse soils.
The water retention characteristics and their variation in tree nurseries and related physical properties were determined for commercially produced growth media made of light slightly humified Sphagnum peat. A total of 100 samples of peat media were collected from filled seedling trays in the greenhouses of four Finnish nurseries in 1990. In addition, the physical properties were determined for two growth media made of compressed peat sheets and chips. The variation in water retention characteristics in nurseries was described using linear models with fixed and random effects. The sources of variation in the mixed linear models were producer, grade, batch (greenhouse) and sample (tray).
The water retention of the peat media at different matric potentials was comparable to that given in the literature. The media shrank an average of 0–16% during desorption. The peat grades were finer than the Nordic quality standards for peat growth media. Particles < 1 mm increased and particles 1–5 mm decreased the water retention characteristics measured. The greatest total variation in water retention was at -1 kPa. The water retention of the peat media differed least at -5 and -10 kPa. The water retention characteristics of media from different producers usually differed significantly. The grades, on the other hand, did not differ from each other in their water retention characteristics nor were there significant interactions between producer and grade. The batch effect was marked but was lower than the effect within batches, where the sample (tray) effect was greater than the effect due to random measurement error. At -10 kPa, the measurement error was, however, clearly greater than the sample effect. The random measurement error was comparable to the batch effect. Aeration of the growth media is dependent on the water content retained between saturation and -1 kPa. The water availability to seedlings at the nursery phase is affected mainly by water retention between -1 and -10 kPa.
The PDF includes an abstract in Finnish.
The model predicts the base diameter of the thickest living branch of a tree growing in a planted or naturally regenerated even-aged stand. A mixed model type was used in which the residual variation was divided into within-stand and between-stand components. The study material consisted of 779 trees measured in 12 plots located in 20 to 35 years old Scots pine (Pinus sylvestris L.) stands (breast height age 10 to 20 years). Branch diameter was closely connected to the breast height diameter of the stem. In a stand of a certain age, competition by close neighbours slightly decreased branch diameter in a given diameter class. According to the model, the greatest difference is between trees subjected to very little competition and those subjected to normal competition. The model was used in simulated stands with varying age, density, and tree arrangement. The simulations showed that trees with rapid diameter growth at young age had thicker branches at a given breast height diameter than trees with slower diameter growth. However, a very slow growth rate did not produce trees with branches thinner than those possessing a medium growth rate.
The PDF includes an abstract in Finnish.
The effect of the size of seed crop, dispersal of seeds and the early development of seedlings on the density and spatial distribution of young Scots pine (Pinus sylvestris L.) stands are evaluated on the basis of theoretical models. The models include (i) number and spatial distribution of parent trees on the regeneration area, (ii) size of annual seed crop, (iii) seed dispersal from a particular parent tree, (iv) germination of the seeds (germination percentage), (v) death of ageing seedlings after the establishment process, and (vi) height growth of the seedlings.
As expected, stand density and spatial distribution varied within a large range in relation to the density of the parent trees and the distance from them. The simulations also showed that natural seedling stands can be expected to be heterogenous due to the geometry of seed dispersal, emphasizing the frequency of young and small trees. The properties of the seedling stands were, however, greatly dependent on the density of the parent trees and the length of the regeneration period.
The PDF includes an abstract in Finnish.
The basic density of the wood of the rowan tree (Sorbus aucuparia L.) is almost the same along the stem but that of the bark is increasing along the stem. The moisture content of the wood and of the bark is increasing along the stem. Its strength in the bending and in the compression is high. The volume shrinkage is high.
The PDF includes an abstract in Finnish
The purpose of the study was to determine the effects of the origin of seeds and the location of cultivation of Scots pine (Pinus sylvestris L.) on certain properties particularly important to the pulp industry. The research material consisted of six parallel trials of the same 12 provenances. Increment cores were taken of a total of 1,267 sample trees, 19 years old. The location of the trial site generally affected the properties to a larger extent than the origin of the seed. The effect of the variation of wood density and fibre yield on the cultivation values of the provenances was only a few percentages on average, however, at most the effect was nearly 10%. Eastern Finnish provenances adapted well to western Finnish conditions.
The PDF includes an abstract in Finnish and French.
Gravimetrically expressed nutrient concentrations of soil analysis were converted to volumetric values using dry bulk densities measured in the natural state and in the laboratory after air-drying and sieving the samples. The aim was to examine, using volumetric samples representing different soil classes, exactly how the converted nutrient values calculated by this laboratory method describe volumetric nutrient contents in undisturbed soil. In the fine soil classes undisturbed bulk density was higher than laboratory bulk density and converted nutrient concentrations were too small. In coarser soil classes the reverse was true, and the values were too high.
The PDF includes an abstract in English.
The aim of this literature review was to compare Finnish Norway spruce (Picea abies (L.) H. Karst.) sawn goods to Central European spruce sawn goods which contain fir in some amount. However, it was found that no statistically valid comparisons have been made. Therefore, conclusions have been based mainly on the relationship between various properties and growth rate. According to this analysis, most properties of Finnish spruce are better, although small in practice.
The PDF includes a summary in English.
Norway spruce (Picea abies (L.) H. Karst.) boards sawn from outer layers of logs were sampled from a sawmill in Northern Finland and another in Southern Finland. Test pieces 20 mm x 20 mm x 20 mm were selected according to maximum variation in growth ring width. Volumetric and longitudinal shrinkage from a soaked to a dry condition were measured. It was found that wood density correlated positively with the volumetric shrinkage but negatively with the longitudinal shrinkage. Dry density was a better predictor than basic density. With constant density and an increase in growth ring width, there was increased shrinkage, especially in samples from Northern Finland. Besides this, when density was kept constant, the shrinkage was higher in the spruce wood from Southern Finland than from Northern Finland.
The PDF includes a summary in Finnish.
The effect of growth rate on wood basic density in even-age Norway spruce (Picea abies (L.) H. Karst.) plantations was studied on the basis of samples collected from 53 stands; 30 trees were sampled in each stand. The prediction of basic density with the help of growth rate and some other tree characteristics could be improved if the social status of the tree was taken into account. Within a stand, the smaller trees had a lower density, while taller trees had a higher density than they should have had on the basis of growth rate alone.
The PDF includes a summary in Finnish.
The study based on young Scots pine (Pinus sylvestris L.) of varying density showed that number of living branches per whorl and total number of living branches per tree were negatively correlated with stand density. On the contrary, the number of dead branches increased with increasing stand density. The diameter of living and dead branches decreased with increasing stand density. Consequently, the branchiness, i.e. the share of the branch cross-sectional area from the surface area of the stem, decreased in dense stands compared with the thin stands. At the densest stands the branchiness, however, levelled of indicating a greater decrease of the radial growth at stems than at branches. The 2/3 power law described relatively well the relationship between stand density and mean squared branch diameter of living branches.
The PDF includes a summary in English.
Two Japanese models regarding the within-stand competition have been reviewed on the basis of relevant literature. Competition-density and 3/2 th power models seem to be applicable also into tree stands. The latter model has been applied into the material obtained from literature. Computations showed consistancy with the results obtained elsewhere in the world. It is concluded that also in Finnish conditions the 3/2 th power law may have great potentials in describing the effects of stand density on tree size.
The PDF includes a summary in English.
Basic density and absorbed energy in impact bending were measured for 500 Norway spruce (Picea abies (L.) H. Karst.) samples from Northern and Southern Finland. Statistical analysis showed that the relationship between impact strength and basic density was significant and regression analysis showed that it was linear.
Furthermore, with constant density, the impact strength was higher in Northern than in Southern Finland. This was due to growth ring width: i.e. when density was kept constant the impact strength increased with decreasing growth ring width. In addition, when the growth ring width was kept constant, the basic density of wood was higher in Southern Finland than in Northern Finland.
The PDF includes a summary in English.
Empirical measurements showed that the strength of a dead branch of Scots pine (Pinus sylvestris L.) was related to the second power of the branch diameter and the third power of the basic density of branch wood. The same factors affected also the strength of living branches. Especially, the contribution of wood density was important. The significance of the results is discussed considering the natural process of self-pruning and its effect on the branchiness of the stem.
The PDF includes a summary in English.
In order to evaluate the strength properties of boards made from small and large Norway spruce (Picea abies) butt logs, 15 small (top end diameter 13 cm) and 15 large (top end diameter 25 cm) logs were sampled from a sawmill in Finland. From each log two test pieces were made in order to measure the bending and compression strength, dry density and average ring width.
The boards from small logs were stronger and their density higher. When the differences between groups were analysed it was found that the strength was determined by the density and ring width. When the density was kept constant, the increase in ring width had a decreasing effect on the strength properties. Because there was a negative correlation between ring width and density, ring width alone had a great effect on the strength properties.
The PDF includes a summary in English.
A population consisting of 450 Norway spruce (Picea abies (L.) H. Karst.) samples was gathered from northern and southern Finnish wood. The static bending strength was affected greatly by the density of the wood. However, keeping the density constant, the bending strength was higher in northern than in southern Finnish wood. The reason was the effect of the growth ring width.
The basic density was affected by the growth rate. Keeping the growth ring width constant, the basic density was over 5 kg/m3 lower in northern than in southern Finnish wood. This result supports the earlier findings on the effect of latitude.
The PDF includes a summary in English.
The study discusses the amount of shrinkage of volumetric undisturbed peat samples when drying to an oven-dry (105°C) condition. The amount of shrinkage is related to various physical properties of peat. In addition, some observations were performed on the shrinkage phenomenon during the drying process. The study results may be used when predicting the shrinkage of peat samples with various peat properties. Knowledge of this kind is particularly important in connection with peat harvesting.
The PDF includes a summary in Finnish.
Eighty Betula nana samples were collected from three swamp sites. In the butt portion of the dwarf shrub the average number of growth rings was 12 and the average diameter of the sprouts 6 mm. The basic density of wood was 457 kg/m3 and that of bark 544 kg/m3. The proportion of bark was 32–38% of weight or volume. The vessel elements and fibres were short and their diameter small. The proportion of vessels was 15%, that of fibres 70% and that of rays 15%.
The PDF includes a summary in Finnish.
The objective of the investigation was to determine the differences between timber grown on a peatland before and after draining, in respect of compressive strength parallel to the grain, static bending strength and density. In addition, the characteristics of boundary zone between the wood formed before, and after the draining with wider growth rings was studied. 41 Scots pine (Pinus sylvestris L.) and 22 Norway spruce (Picea abies (L.) H. Karst.) trees were studied.
The compressive strength of pine usually decreased from the butt end upwards, but no trend was observed in spruce wood. In coniferous trees, wide-ringed wood formed subsequent to draining was slightly lighter than the close-ringed wood produced prior the draining. The density of pine as well as spruce increases as the width of the growth rings decrease up to a certain limit. The strength of the different kinds of wood seems to decrease from the butt end upwards.
In both species, the compressive strength parallel to the grain and the bending strength are lowest in such wood that contains exclusively wide-ringed wood formed subsequent to draining. Also, compressive and bending strength increase with decreasing width of the growth rings. The longitudinal shrinkage of compression wood in spruce was several times that of normal wood, and the bending strength was lower than that of normal wood particularly in spruce. The compressive strength parallel to the grain in dry condition was, however, higher than in normal wood both in pine and spruce.
The PDF includes a summary in English.
The anatomical variation of a lateral root was compared with that of the stem of the same tree at breast height by concentrating on the intrelationships of certain anatomical features in Betula pendula and B. pubescens. The results showed that root wood has several essential features of stem wood, such as gelatinous fibres, growth eccentricity, scalariform perforation plates in the vessels and pith flecks. However, some of the anatomical differences are significant. The differences between the species were more pronounced in the root than in the stem anatomy.
The PDF includes a summary in Finnish.
Ten trees of mountain birch (Betula tortuosa Ledeb, now Betula pubescens subsp. czerepanovii) with an average age of 39 years were sampled in northern Lapland in Finland. The average green density of wood was 589 kg/m3 and that of bark 941 kg/m3. The basic densities were 520 kg/m3 and 559 kg/m3, respectively. The basic density increased only little from the pith to the surface. In contrast, the number of bars in the perforation plates of the vessels increased considerably in the same direction. The average number of bars was 17.3.
The PDF includes a summary in Finnish.
The share of stem, branch and needle growth was dependent on the within-stand light regime in a young Scots pine (Pinus sylvestris L.) stand. The share of needle growth increased at the expense of stem and branch growth in poor light conditions. In good light condition the share of branch wood increased substantially. The share of stem wood growth was greatest in moderate shading, emphasizing the role of an adequate stand density for growing high-quality timber. The basic density of the stem wood was considerably greater in suppressed trees than in dominating trees. The differences were related to the illumination of the crown system.
The PDF includes a summary in Finnish.
Downy birch (Betula pubescens Ehrh.) trees growing on a drained peatland were cut during dormancy. The properties of the one-year old shoots produced by the stumps were measured in the autumn after one growing season. The one-year old willow shoots (a mixture of Salix phylicifolia L., S. pentandra L. and S. caprea L.) were collected from an abandoned field.
The basic density of unbarked shoots was 443 kg/m3 for birch and 346 kg/m3 for willow. The basic density of the bark was much higher than that of the wood. The effect of shoot length on the properties was small with the exception of cellular proportions. The fibre percentage increased and vessel percentage decreased with increasing shoot length.
The PDF includes a summary in Finnish.
Crown and stem growth of young Scots pines (Pinus sylvestris L.) were studied in relation to photosynthate supply and light condition in a stand. The magnitude of needle and bud formation, and radial and height growth were to a great extent dependent on the photosynthate supply. However, in shaded conditions the growth of each characteristics was greater than expected on the basis of photosynthate supply. In the stem system this was especially apparent for height growth. Consequently, height growth was favoured at the expense of radial growth in shaded conditions. It also appeared that the basic density of wood was negatively related to both tree position and photosynthate supply.
The PDF includes a summary in Finnish.
Variation of wood characteristics was studied in two mature trees of Betula pendula Roth and two of B. pubescens Ehrh. by stressing the interrelationships of some of the structural features, basic density and shrinkage. Correlation analysis revealed that basic density was related to some of the variables studied, viz: number of rings (age) and distance from pith, height from the ground, ring width, fibre length and double wall thickness. Multiple regression equation showed that age from pith and height from the ground explained 80% of variation of basic density in B. pendula. Two structural variables, viz: fibre wall thickness and ring width accounted for only 28% of variation of basic density in B. pubescens. No significant relations could be found between shrinkage and any of the wood parameters measured in B. pendula while some of the relationships were significant in B. pubescens. However, only 55% of variation of volumetric shrinkage was explained by two related factors, viz: basic density and moisture content while only 35% of variation of tangential shrinkage was explained by ring width and fibre width. Increase in fibre length was highly associated with the increase in fibre width, double wall thickness and vessel length in either species.
The PDF includes a summary in Finnish.
The technique of double normalizing, i.e. normalizing the relative needle biomass and the length of the living crown system, is applied to the modelling of the distribution of needle biomass in the canopy of young Scots pine (Pinus sylvestris L.) stands. The study based on the parameters of β-function shows that at the individual-tree level, the variance in needle distribution was not closely associated with any tree characteristics. A shift in the point of maximum needle biomass upwards unsuppressed trees was, however, evident. This was associated with an increase in the height of the trees. At the stand level, the stand mean height and stand density had an equal and a rather high potential for explaining the variance in the needle distribution. The normalized crowns are utilized in models for determining light extinction in the crown. A special technique for determining the amount of photosynthates available for growth in a particular tree is presented.
The PDF includes a summary in Finnish.
The study concerned with variations in the density of the wood of different provenances in provenance test series of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) RH. Karst.), established in 1931. Increment cores were collected from 10 sample trees from each sample block. The density of the pine wood was noticeably higher than that of spruce. The basic density was in average 450 kg/m3 for Scots pine, and the variation between different origins was 3–9%, while the average basic density of spruce was under 400 kg/m3 and the variation 3–10%. Statistically significant differences were found between the mean basic densities of different provenances in all sub-experiments for spruce, but only in one pine sub-experiment. However, these differences were not due to the altitude or latitude of the place of the origin. Volume growth seems to be the dominant component in the formation of dry matter yield.
The PDF includes a summary in Finnish.
The effect of solar radiation and air temperature on the basic density of Scots pine (Pinus sylvestris L.) wood has been investigated on the basis of material obtained from the literature. Solar radiation seemed to affect basic density during earlywood formation. Temperature had the greatest effect on basic density in late summer. The varying effects of radiation and temperature seemed to be associated with the dynamics of the crown system of trees. Especially the capacity of the crown system to produce the amount of photosynthesis needed in tracheid growth is assumed to be of importance in controlling the variation in the basic density of Scots pine wood. Growth of thracheids from the point of view of photosynthate supply is discussed.
The PDF includes a summary in Finnish.
The effect of temperature and water supply in the basic density of Scots pine (Pinus sylvestris L.) wood was studied on the basis of material obtained from the literature. On a monthly basis, the basic density increased with increasing mean temperature for June, July and August. The rainfall in these months had no detectable effect on the basic density except through the difference between rainfall and evaporation in July. On a yearly basis, the basic density increased with increasing mean temperature, temperature sum and length of growth period. The effect of water supply on the basic density was evident, and a linear relationship between basic density and annual rainfall was detected. The variation in basic density was, however, explained only partly by the chosen factors. Possible reasons for the poor explanatory power have been discussed.
The PDF includes a summary in Finnish.
According to the available literature, the times when pulpwood limbing was made by axe and barking by hand tools, barking either had no effect on the pile density (if limbing quality was good) or increased pile density (if limbing was bad). When rotary barking machines are used, the branch stumps remain intact during barking. Therefore, if there are branch stumps in the pulpwood, barking decreases the pile density. Nowadays, when power saw limbing is a common practice in Finland, barking presumably greatly decreases the pile density, due to the fact that in power saw limbing branch stumps are numerous and high. Therefore, the method to estimate the solid volume of a pile of unbarked pulpwood are not applicable to barked pulpwood without modification.
The PDF includes a summary in English.
About 100 years old larch (Larix sibirica Lebed. And L. decidua Mill.) trees were felled and the basic density samples taken from the stump level were determined. The number of trees was 21 and number of samples 378. The maximum basic density was reached at the age of 40–60 years, as counted from the pith. The basic density decreased as the width of the growth rings increased or the amount of heartwood decreased. The average basic density of the whole disc was 543 kg/m3 in L. sibirica and 497 kg/m3 in L. decidua. The basic densities of bark were 328 kg/m3 and 286 kg/m3, respectively.
The PDF includes a summary in English.
In this study two methods of determining the basic density of total tree chips are compared. The method of Mäkelä (1977) is based on the volumes of Scots pine, Norway spruce, birch, and alder in a logging area, and the age of the trees. In the other method the basic density of total tree chips is measured by the common displacement method. The correlation was 0,730 in the material of 22 logging areas. Besides this it was found that the basic density of chips increases as the size of the chip particles increases with the exception of the smallest particles.
The PDF includes a summary in English.
A method is presented in this study for calculating the basic density of whole tree- and logging residue chips and the results of trial measurements on some commonly used chip sorts. The basic density of Scots pine whole tree chips was found to be 1–18 kg/m3 smaller than that of pine pulpwood of the same age. The basic density of Norway spruce whole tree chips was 4–22 kg/m3 greater than that of similar aged pulpwood. The basic density of birch whole tree chips was 4–16 kg/m3 and grey alder whole tree chips 7–24 kg/m3 greater than pulpwood of the same age. The basic density of conifer logging residue chips was considerably greater than that of pine and spruce whole tree ships.
The PDF includes a summary in English.
The aim of the present paper was to study the annual production of Pleurozium schreberi (Brid.) Mitt., Hylocomnium splendens (Hedw.) B.S.G and Dicranum polysetum Sw. as a function of light available for photosynthesis. The productivity of the above moss species is studied using the harvested quadrats method in Norway spruce (Picea abies) stands of the Myrtillus site type representing different stand density classes (basal area from 0 to 34 m2/ha) in Southern Finland.
The annual production of each species in different stands was correlated with the amount of light available for photosynthesis i.e. with the photosynthetic production. Functions for the dependence of productivity on light conditions were produced for each species. The individual functions and their ecological significance is discussed. The adaptation of each species to low light intensity is evident since no meaningful addition to production takes place when the photosynthetic light ratio reaches values greater than 0.3–0.4. In other words, the level of photosynthesis which is 30–40% of that possible in the open, provides sufficient supply of carbohydrates or the basic functions of the moss species studied. Pleurozium schreberi and Dicranum polysetum seem to have greater light requirements than Hylocomnium splendens.
The PDF includes a summary in Finnish.
According to the available literature, the appearance of Parana pine (Araucaria angustifolia (Bertol.) Kuntze) wood resembles that of Scots pine (Pinus sylvestris L.). The anatomy is quite different, however. There are no resin canals and fusiform rays with resin canals in Parana pine. They are abundant in Scots pine, however. The basic density of Parana pine is higher. In both species the density increases from the pith outwards, the maximum being reached at the age of 100 years. Compression wood is more common in Parana pine than in Scots pine, and this makes the longitudinal shrinkage of Parana pine greater than that of Scots pine. Otherwise the shrinkage properties do not differ. The mechanical strength is of the same magnitude with the exception of hardness, where Parana pine is superior.
The PDF includes a summary in English.
In the study the proportion of branch samples of various diameter were studied. The branches were taken from small trees to be harvested by total tree chipping method. The material consisted of 1,056 branch samples of birch (Betula verrucosa, now B. pendula Roth, and Betula pubescens Erhr.), Norway spruce (Picea abies (L.) H. Karst.) and Scots pine (Pinus sylvestris L.) at intervals of 20 cm along each branch.
With exception of the basic density of bark, there was a relation between all the other properties which were studied and the diameter. Even when the effect of diameter was eliminated, in many cases the effect of the distance of the samples from the stem became apparent.
The PDF includes a summary in English.
The paper describes a method for the measurement of basic density of total tree chips. In the method the chips are placed in a container, which is immersed in a cylinder full of water, and the container is weighted at two levels. In the upper part of the cylinder the pressure against the air bubbles is smaller than in the lower level. In this method, the effect of air bubbles in the result can be eliminated. Besides this, due to homogenization of the material to be measured only small number of samples are needed for the estimation of the average basic density.
The PDF includes a summary in English.
The objective of this investigation was to study the influence of stand density of white birch (Betula pubescens Ehrl.) on the minimum temperatures in the stand during the growing season, and the actual minimum temperatures of the leading shoot of Norway spruce (Picea abies (L.) H. Karst.) seedlings growing in the open. The 40-year-old uniform white birch stand was situated in 142 m above the sea level in Southern Finland. The stand was treated with thinnings of three different densities in 1961.
Air temperature was recorded in four sample plots at heights of 0.1 m, 0.5 m, 1.0 m, 2 m and 4 m. In the stand of moderate density, temperatures were measured at heights of 6.0 m, and in the stand of full density at 6.0 m, 8.0 m and 10.0 m.
The temperature differences between stands of various densities proved to be rather small. Especially the thinnest stand differed very little from the open area. The soil surface has in all cases been warm compared with the higher air layers indicating meadow-fog-type by Geier (1965). On cloudy or windy weather all the temperature profiles in the various stands resembled each other. The difference between the air temperature and temperature of the spruce shoot was greatest at midnight and decreased steadily thereafter.
The problem in using shelter stands for spruce regeneration areas is that optimum shelter stand density is difficult to define. Already a thin shelter stand causes drawbacks to the young seedlings, but in order to be effective enough against early frosts, the shelter stand should be comparatively dense.
The PDF includes a summary in English.
This study determined the correlation between the bulk density, humification degree and laboratory volume weight of the surface peat of virgin and drained peatlands. The material consists of 316 peat samples 250 cc in volume.
The correlation between bulk density and the laboratory volume weight was found to be close. Eliminating the ash and moisture content of air-dry samples did not improve the correlation. There were distinct level differences among peat types; difference between bulk density and laboratory volume weight was the greatest for Sphagnum and the smallest for woody peats. The Carex peats were intermediate. The water content at sampling may partly determine these differences. When the data were treated as a whole, the difference between bulk density and laboratory volume weight seemed to increase, as the water content increased.
The correlation was also close between bulk density and the degree of humification. For all data, multivariable correlation analysis revealed that bulk density was determined for the largest part by the degree of humification, least by the water content at sampling, laboratory volume weight being intermediate. Thus, already the determination of the degree of humification provides a clear picture of the bulk density for each peat type. It can be also determined by fair accuracy on the basis of the laboratory volume weight. The bulk density is required for e.g. water regime studies, to convert the water content of peat measured in weight units into volume percentages.
The PDF includes a summary in Finnish.
The objective of the study was to establish the influence of the founding density of a stand and the intensity of intermediate cutting on the quality of pine saw logs stems, primarily on their branchiness. Measurements were carried out in 68 Myrtillus-type and 32 Vaccinium-type Scots pine (Pinus sylvestris L.) stands. The quality of 1,982 sample trees was assessed.
According to the results, the branchless part of the stem is longest in the older age classes of trees. In all age classes the percentage of the branchless part is highest in medium sized stems. The relative height of the crown limit is greatest in small diameter classes and continues as the thickness of the tree increases. The crown is longer in the thicker tree. The grade of the butt log is on average highest in medium sized stems. Knottiness of a log made it unsuitable for a saw log only among the thickest stems. The relative share of the u/s grade decreased as the thickness of the trees increased.
From the point of view of early development of the trees it was concluded that in all age classes the branchless part is the shorter the faster the tree has grown in diameter when it was young. Also, branches of the butt log are the bigger the faster the tree has developed when it was young. The grade of the butt log improves as the thickness of the annual rings diminishes.
To produce good quality sawn timber, the pine stands should be established dense, and the first thinnings should be delayed as much as possible. The best time for the thinning would be when the diameter of the dominant trees at stump height is 12–15 cm and when all the branches have died on the length of the butt log. After the first thinning, comparatively intense intermediate thinning may be applied.
The PDF includes a summary in English.
In Finland ocular estimation of the growing stock has been made by means of volume tables based on the mean height and density class, or on the dominant height and density class of the stand. The author has observed that if the volume of a stand is estimated by employment of both tables, the results vary markedly from one another. Furthermore, volume of fully stocked stands in the dominant height tables show an approximate correspondence with the volumes of managed normal stands in Southern Finland.
The purpose of this study is therefore to develop volume tables for coniferous trees, based on the density class and the mean height; these tables should give the same volume for a stand as the dominant height tables.
Volume per hectare of 187 Scots pine (Pinus sylvestris L.) stands and 120 Norway spruce (Picea abies (L.) Karst.) stands on different forest types were estimated using the relascope method in Southern Finland. With the volume and the measured mean and dominant heights as a basis, the density classes were extracted from both mean height tables and the dominant height tables. The investigation indicates that the author estimated the dense stands too thinly, and the thin ones too densely, and that the erroneous estimation of the density can be corrected by comparison of the ocular estimations and the corresponding measurements. The density can be measured by means of crown closure, stem number per hectare or the basal area per hectare.
The PDF includes a summary in English.
The data on housing conditions presented in this study derives from the general population census of Finland of 1950. The sub-sample of professional forest workers was taken from the sample collected for the larger investigation of rural labour force. The housing density of professional forest workers was considerably higher than the average for the population in general. The total population of the country, according to the 1950 Census, showed a ratio of 154 persons to 100 rooms, while the average weighted with the number of rooms for forest workers was 237:100, and the unweighted 340:100. If three per room is taken as the limit of crowded housing, nearly half of the professional forest workers lived in crowded conditions. Over two-thirds of them owned their dwellings, and only 2% of them lived in dwellings owned by the employer. Three quarters of all the men belonged to the holder-family of small farms. About three quarters of them lived in dwellings of one or two rooms. Also, the size of the family and household affected the housing density. The housing density exceeds the average in the youngest age classes. This is probably because the sons of families with poor economic standing must start work young in forestry, and those families have a high housing density. A quarter of the families had electricity in their dwellings. Few had running water or sewage in their houses.
The PDF includes a summary in English.
Earlier research has presented contradictory results of the influence of forest site type on the weight of wood. In this study, dominant trees of Scots pine (Pinus sylvestris L.) was chosen as sample trees on four forest site types: Calluna, Vaccinium, Myrtillus and Oxalis site types. The trees were felled in autumn, when the water content of the wood is low. Weight of the test samples was measured weigh before and after drying. Undried wood, both sapwood and heartwood, is heavier in Myrtillus type than in Vaccinium type. The weight of the air-dried heartwood did not differ between the two forest site types. Air-dried- sapwood was heaviest in Myrtillus site type. Air-dried heartwood was heaviest in Vaccinium site type, and lightest in Oxalis type. Owen-dried sapwood was heaviest in Calluna site type, where the tree growth is slow, but weight differences were small in owen-dried heartwood. It can be claimed that forest type affects wood quality.
The PDF includes a summary in English.
A nonlinear programming algorithm was combined with two individual-tree growth simulators consisting of distance-independent diameter and height growth models and mortality models. Management questions that can be addressed by the optimization model include the timing, intensity and type of thinning, rotation age, and initial density. The results were calculated for Norway spruce (Picea abies (L.) H. Karst.) stands on Oxalis-Myrtillus site in Southern Finland, where the stand density after clearing of a seedling stand is about 2,000 trees/ha.
The optimum thinning programs were characterized by late first thinnings (at dominant height of 15–17 m) and relatively high growing stock levels. It was optimal to thin from above, unless mean annual increment was maximized instead of an economic objective. In most cases, the optimum number of thinnings was two or three. Compared to a no-thinning alternative, thinnings increased revenues by 15 –45% depending on the objective of stand management. Optimum rotation was strongly dependent on the interest rate.
Hooke and Jeeves’ direct search method was used for determining optimum solutions. The performance of the optimization algorithm was examined in terms of the number of functional evaluations and the equivalence of the objective function values of repeated optimizations.
The PDF includes a summary in Finnish.
The study was carried out at Padasjoki, Southern Finland, where moose (Alces alces L.) density on the winter range had been over 1.5 individuals/km2. Moose browsing intensity, expressed in terms of number of twigs eaten and biomass used, increased with stand density (biomass). Total biomass consumption (dry weight) per sample plot and per sapling. The number of bites increased, but the percentage biomass removed did not differ when stand density increased. A relatively large bite size was observed on the plots of low stand density. The quantity of food, which on average was of relatively low quality, was obviously important due to the benefit gained through reducing the search time.
The nutritive value of the browse, expressed in terms of chemical compounds indicating low food digestibility, was lower in the dense than in the sparse Scots pine stand. However, the amount of crude protein and arginine were relatively high in the dense stand. We concluded that shading affected the nutritional status of saplings on high density plots.
Although the biomass removed by moose per sapling was high for low density plots, the remaining biomass was larger than that on the high-density plots owing to the relatively large twig biomass of saplings. The number of saplings per hectare without main stem breakage increased significantly as stand density increased.
The PDF includes a summary in Finnish.
The aims of the present study were to determine physical and physio-chemical properties of some Finnish forest tree nursery soils, and to examine relationships between these properties and the amount of organic matter in the soil.
The following soil tillage layer properties of 33 fields belonging to 8 forest tree nurseries were determined: soil particle size distribution, organic matter content, bulk density and density of solids, total pore space, soil water volume at potentials pF 2.0 and 4.2, available water content and air space at potential pF 2.0, active acidity, electrical conductivity index and cation exchange capacities at pH 4.5 and 8.0. The soil texture class of the tillage layer parent material was sand, only in a few cases did higher percentage of silt and clay indicate a morainic nature of parent material. The amount of organic material in the soils varied within wide limits, reflecting differences in amelioration policy between the single nurseries.
Relationships between the physical properties of the soil parent material and those related to fertility were in most cases strongly influenced by the amount of soil organic matter. Soil density values decreased as the organic matter content increased from 2 to 25%, giving rise to the increase in the total pore space. However, the amount of water held at potential pF 2.0 and the available water content did not increase with increasing organic matter content. This was due to the absence of the particle fraction in the sand. Nursery soil amelioration, involving in most cases a mixture of Sphagnum peat with sand, thus gives rise to an increase in the content of drainable water.
Cation exchange capacities were positively correlated with the organic matter content. However, the absolute number of exchange sites expressed as equivalents in the tillage layer did not increase in accordance with the increase in organic matter content due to the influence of the organic matter content upon the ratio of solids in the voids.
The PDF includes a summary in English.
The report concludes a series of studies on the early development of young Scots pine (Pinus sylvestris L.) stands. The basis assumption made in the study series was that the within-stand light regime is the main driving force for total tree growth and its allocation of photosynthates for crown, stem and root growth. An individual tree growing in a stand under a varying light regime which is controlled by the stand structure, is the basic unit used in the study. The photosynthesis of an individual tree is determined by the light regime. The stand is formed from individual trees.
The model is applied in simulation of the growth and development of tree stands. Several computer runs representing various densities, height distributions and tree species mixtures were carried out. Potential application areas, properties of the model and future needs of investigations are discussed.
The PDF includes a summary in English.
The purpose of this study was determining the optimum cutting program for forest stands by the application of dynamic programming. Calculations have been made for even-aged Scots pine (Pinus sylvestris L.) stands in Southern Finland, aged 50-100 years. Three logging cost levels, thinning from below and from above, and rates of interest of 1, 2, 3, 4, and 5% was applied. Both optimum routes and the economic results of different cutting programs was analysed.
According to the results, the higher the rate of interest is, the lower the density remains, and shorter the rotation is. The starting level of the growing stock may influence the treatment of the stand for tens of years. If logging costs change, so that harvesting small wood becomes relatively more expensive in the future, the density of growing stock will increase. However, heavy thinnings today are recommendable, to avoid expensive thinnings in the future.
The density of the growing stock should be higher if thinning from above is applied, instead of thinning from below. The growth of the stands thinned from below needs to be greater than the growth of stands thinned from above, to justify thinnings from below. Too high density often results in larger losses than do too low a density or the wrong rotation. Thinnings seem to be profitable even at much higher logging costs than those of today. The maturity of the stand is determined both by the age and the density of the growing stock. The stand may be mature because of great age, high density combined with a relatively high age, or because the growing stock is too low in density.
The PDF includes a summary in Finnish.
Pulpwood arriving at the mills is mainly measured by weighing. In the loading phase of forwarding and trucking, timber is weighed using scales mounted in the grapple loader. The measured weight of timber is converted into volume using a conversion factor defined as green density (kg m–3). At the mill, the green density factor is determined by sampling measurements, while in connection with weighing with grapple-mounted scales during transportation, fixed green density factors are used. In this study, we developed predictive regression models for the green density of pulpwood. The models were constructed separately by pulpwood assortments: pine (contains mainly Pinus sylvestris L); spruce (mainly Picea abies (L.) Karst.); decayed spruce; birch (mainly Betula pubescens Ehrh. and Betula pendula Roth); and aspen (mainly Populus tremula L.). Study material was composed of the sampling-based measurements at the mills between 2013–2019. The models were specified as linear mixed models with both fixed and random parameters. The fixed effect produced the expected value of green density as a function of delivery week, storage time, and meteorological conditions during storage. The random effects allowed the model calibration by utilizing the previous sampling weight measurements. The model validation showed that the model predictions faithfully reproduced the observed seasonal variation in green density. They were more reliable than those obtained with the current practices. Even the uncalibrated (fixed) predictions had lower relative root mean squared prediction errors than those obtained with the current practices.
To preliminary evaluate the potential wood utilization of Betula platyphylla Sukaczev trees naturally regenerated in Mongolia, growth characteristics (stem diameter and tree height), wood properties (annual ring width, basic density, and compressive strength parallel to grain at the green condition) of core samples, and stress-wave velocity in stems were investigated for Betula platyphylla trees grown naturally in three different sites in Selenge, Mongolia. Betula platyphylla trees, naturally grown in Nikko, Japan, were also examined to compare wood properties between the two regions. The mean values of stem diameter, tree height, stress-wave velocity of stems, annual ring width, basic density, and compressive strength parallel to grain at green condition in Mongolian B. platyphylla were 17.6 cm, 14.1 m, 3.50 km s–1, 1.27 mm, 0.51 g cm–3, and 20.4 MPa, respectively. Basic density and compressive strength were decreased first from the pith, and then gradually increased toward the bark. The wood properties of B. platyphylla trees grown naturally in Mongolia were similar to those in B. platyphylla trees grown in Japan. Growth characteristics, especially stem diameter, were positively correlated with the stress-wave velocity of stems and basic density. Early evaluation of basic density in B. platyphylla trees is possible by using wood located 2 cm from the pith. Basic density at the position from the 1st to the 15th annual ring from the pith showed significant between-site differences in Mongolian B. platyphylla. Based on the results, it is concluded that the wood of B. platyphylla trees grown in Mongolia may be used for industrial products as well as those from similar species in other countries.
The Green River precommercial thinning (PCT) trial was established between 1959–1961 in New Brunswick (Canada) within natural balsam fir (Abies balsamea (L.) Mill.)-dominated stands. Three silviculture scenarios differing only by the increasing nominal spacings of PCT treatments (1.2 m, 1.8 m, 2.4 m) were compared to an unthinned control within randomized replicates that were clearcut harvested in 2008 and treated with herbicide in 2011. During the fourth post-harvest growing season, we assessed regeneration, competing vegetation and coarse woody debris (CWD; differentiated between large woody debris and slash) to assess the legacy effects of PCT on regeneration of next rotation stands. Our results confirmed that silviculture scenarios including PCT significantly increased conifer stocking in treated plots compared to control conditions, but only in the 1.8 m nominal spacing. Considering that treated and untreated stands were fully stocked, we conclude that PCT using the spacing gradient tested has no legacy effect on the regeneration of next rotation natural balsam fir stands. Given the known sensitivity of balsam fir to future climate conditions in this region, we suggest that future treatments should promote tree species diversity to support ecosystem resilience to climate change by favouring more warm-adapted species, such as some hardwoods.
The strength of soil is known to be dependent on water content but the relationship is strongly affected by the type of soil. Accurate moisture content – soil strength models will provide forest managers with the improved ability to reduce soil disturbances and increase annual forest machine utilization rates. The aim of this study was to examine soil strength and how it is connected to the physical properties of fine-grained forest soils; and develop models that could be applied in practical forestry to make predictions on rutting induced by forest machines. Field studies were conducted on two separate forests in Southern Finland. The data consisted of parallel measurements of dry soil bulk density (BD), volumetric water content (VWC) and penetration resistance (PR). The model performance was logical, and the results were in harmony with earlier findings. The accuracy of the models created was tested with independent data. The models may be regarded rather trustworthy, since no significant bias was found. Mean absolute error of roughly 20% was found which may be regarded as acceptable taken into account the character of the penetrometer tool. The models can be linked with mobility models predicting either risks of rutting, compaction or rolling resistance.
Geographic variations in growth, stress-wave velocity of stem, dynamic Young’s modulus of stems and logs, annual ring width, latewood percentage and basic density were investigated for Larix sibirica (Münchh.) Ledeb. naturally grown in Mongolia. A total of 250 trees with 20 to 30 cm in stem diameter at a height of 1.3 m above ground level were selected from each natural stand in five different provenances in Mongolia. In addition, five trees in each stand were cut for measuring dynamic Young’s modulus of stems and logs, annual ring width, latewood percentage and basic density. Mean values of stress-wave velocity of stems in each stand ranged from 2.92 to 3.41 km s–1, and the mean value of five stands was 3.23 km s–1. Mean values of dynamic Young’s modulus of logs in each stand ranged from 5.17 to 9.72 GPa. A significant correlation (r = 0.798, p < 0.01) was found between stress-wave velocity of stems and dynamic Young’s modulus of logs. Among the five stands, the highest and the lowest values of average annual ring number were 193 and 44, respectively. Mean values of basic density in five trees within each stand were examined and ranged from 0.52 to 0.56 g cm–3. Significant differences among five stands were found in tree height, stress-wave velocity of stem, dynamic Young’s modulus of stems and logs, annual ring width and latewood percentage, suggesting that L. sibirica trees naturally grown in Mongolia have geographic variations in mechanical properties of wood.
Physical soil properties have a marked influence on the quality of forest sites and on the preconditions for forest growth and management. In this study, water retention characteristics (WRC) and related physical soil properties in addition to vegetation coverage and tree stand data were studied at upland forest sites in Finland. Fixed and mixed models between soil and site characteristics were formed to estimate physical and hydrologic soil characteristics and the site quality with indirect co-varying variables. In the present data, the site quality index (H100) shows a high coefficient of determination in respect to the temperature sum. It is also related to soil fine fraction content, topsoil pH and water retention at field capacity. The thickness of the humus layer is predictable from the pH and cover of xeric and mesic plant species. The soil fine fraction content (clay + silt) is closely related to water retention at field capacity, the soil layer and site type, and without WRC to the temperature sum and site index and type, as well as the slope angle. The soil bulk density is related to organic matter, depth (layer) or alternatively to organic matter, slope and field estimated textural class (fine, medium, coarse). Water retention characteristics were found to be best determinable by the fine fraction content, depth and bulk density. Water content and air-filled porosity at field capacity are closely related to the fine fraction. This study provides novel models for further investigations that aim at improved prediction models for forest growth, hydrology and trafficability.
Hybrid aspen (Populus tremula × P. tremuloides) is one of the fastest growing tree species in Finland. During the mid-1990s, a breeding programme was started with the aim of selecting clones that were superior in producing pulpwood. Hybrid aspen can also be grown as a short-rotation crop for bioenergy. To study clonal variation in wood and bark properties, seven clones were selected from a 12-year-old field trial located in southern Finland. From each clone, five trees were harvested and samples were taken from stem wood, stem bark and branches to determine basic density, effective heating value, moisture and ash content. Vertical within-tree variation in moisture content and basic density was also studied. The differences between clones were significant for almost all studied properties. For all studied properties there was a significant difference between wood and bark. Wood had lower ash content (0.5% vs. 3.9%), basic density (378 kg m–3 vs. 450 kg m–3) and effective heating value (18.26 MJ kg–1 vs. 19.24 MJ kg–1), but higher moisture content (55% vs. 49%) than bark. The values for branches were intermediate. These results suggest that the properties of hybrid aspen important for energy use could be improved by clonal selection. However, selecting clones based on fast growth only may be challenging since it may lead to a decrease in hybrid aspen wood density.
Silver birch (Betula pendula Roth) seed origins from the Baltic countries and from Finland were compared in terms of growth, wood density, bark thickness and the incidence of darkened core wood, frost cracks and decay, and the effect of seed origin latitude was examined in two Finnish provenance trials. The material consisted of 21 stand and single tree origins ranging from latitudes 54° to 63°N from the Baltic countries and Finland. The trials, measured at the age of 22 years, were located at Tuusula (60°21´N), southern Finland and at Viitasaari (63°11´N), central Finland. The Baltic origins were superior to the Finnish ones in the southern trial regarding height, whereas in central Finland the Finnish origins grew better. There was no consistent difference between the Baltic and the Finnish group of origins in wood density. Bark thickness decreased with increasing seed origin latitude. The Baltic origins had significantly thicker bark than the Finnish origins. A moderate positive correlation was detected between the seed origin latitude and the incidence of darkened core wood in the southern trial, where the darkened core wood was more common in the Finnish origins than in the Baltic ones. The highest proportion of trees with frost cracks was detected in the south-western Latvian origins growing in central Finland. Seed transfers from the Baltic would have an increasing effect on the bark thickness of birch logs, but no or only minor effects on wood density. Based on our results, there is no reason to recommend the use of non-native Baltic seed origins in Finland instead of the native locally adapted seed sources.
The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.