Current issue: 56(4)

Under compilation: 57(1)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Silva Fennica 1926-1997
Acta Forestalia Fennica

Articles containing the keyword 'mechanical site preparation'

Category: Research article

article id 10528, category Research article
Jaana Luoranen, Heli Viiri. (2021). Comparison of the planting success and risks of pine weevil damage on mineral soil and drained peatland sites three years after planting. Silva Fennica vol. 55 no. 4 article id 10528.
Keywords: survival; planting; mechanical site preparation; ground vegetation; forest regeneration; Hylobius abietis
Highlights: The planting success was poorer on peatland sites than on mineral soil; Dense ground vegetation cover is more probable on peatland than on mineral soil; No differences in pine weevil feeding damage on mineral soil and peatland were found; Cultivated mineral soil reduced the vegetation cover, feeding damage and seedling mortality.
Abstract | Full text in HTML | Full text in PDF | Author Info

Over 20% of regeneration operations will be on drained peatland in the next decade in Finland. There are only a few studies comparing the planting success and the risk of pine weevil (Hylobius abetis (L.) feeding damage on mineral soil and drained peatland. Thirty sites planted with Norway spruce (Picea abies (L.) H. Karst.) container seedlings in 2009 in Southern and Central Finland were inventoried three growing seasons after planting. Prediction models for the probability of survival, pine weevil damage and the presence of ground vegetation cover were done separately for peatland and mineral soil sites. The planting success was 17% lower on peatland sites (1379 surviving seedlings ha–1) than on mineral soil (1654 seedlings ha–1). The factors explaining the survival were the ground vegetation cover and type of the planting spot on the peatland, and the ground vegetation cover on mineral soil. On mineral soil, 76% of the planting spots were on cultivated mineral soil while on peatland only 28% of the seedlings were planted on similar spots. There were also fewer seedlings that were surrounded by dense ground vegetation on mineral soil (4%) than on peatland (14%). Pine weevil feeding damage did not differ significantly on peatland (23%) or mineral soil (18%). The more time there was from clear-cutting, the more the probability of pine weevil feeding damage was reduced on both soil classes. Additionally, cover vegetation in the vicinity of the seedlings increased on mineral soil. Cultivated planting spots, especially those covered by mineral soil, prevented pine weevil feeding and reduced the harmful effects of vegetation on the seedlings both on mineral soil and peatland.

article id 263, category Research article
Aksel Granhus, Dag Fjeld. (2008). Time consumption of planting after partial harvests. Silva Fennica vol. 42 no. 1 article id 263.
Keywords: planting; work study; mechanical site preparation; partial cutting; scarification
Abstract | View details | Full text in PDF | Author Info
Partial harvesting combined with underplanting may be a means to reduce the risk of regeneration failure when e.g. unfavourable microclimatic conditions or severe damage by bark-feeding insects may be expected after clear-cutting, and to maintain or establish certain stand structures or tree species mixture. In this study, we performed time studies of manual planting with and without prior site preparation (patch scarification, inverting) in partially harvested stands of Norway spruce (Picea abies (L.) Karst.). The harvest treatments included basal area removals of approx. 35, 45, and 55%, and a patch clear-cut treatment that was assumed to provide the same conditions for planting as conventional clear-cutting. Site preparation had a much larger influence on time consumption plant–1 (main time) than the harvest treatment. The lowest time consumption was found with inverting and the highest without site preparation. The time spent on walking between planting spots increased with decreasing harvest intensity, reflecting a lower density of planted seedlings in the partially harvested stands. A corresponding increase in main time per plant only occurred after site preparation, since the time spent on clearing the planting spot (removal of logging residue and humus) on untreated plots was higher at the higher harvest strengths. The variation in time consumption attributed to the six replicate stands was large and mainly due to the difference among stands planted by different workers.
  • Granhus, Norwegian University of Life Sciences, Dept. of Ecology and Natural Resource Management (INA), P.O.Box 5003, NO-1432 Ås, Norway E-mail: (email)
  • Fjeld, Swedish University of Agricultural Sciences, Dept. of Forest Resource Management, SE-901 83 Umeå, Sweden E-mail:

Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles