Current issue: 58(2)

Under compilation: 58(3)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'whole-tree harvest'

Category : Article

article id 4944, category Article
Eino Mälkönen. (1976). Effect of whole-tree harvesting on soil fertility. Silva Fennica vol. 10 no. 3 article id 4944. https://doi.org/10.14214/sf.a14790
Keywords: logging; thinnings; nutrient losses; whole-tree harvesting
Abstract | View details | Full text in PDF | Author Info

This paper analyses the nutrient loses caused by whole-tree harvesting on the basis of the literature data. It has been considered that traditional stemwood harvesting does not lead to impoverishment of the soil because the nutrient content of the wood is quite low. The nutrient loss occurring in connection with heavy thinnings and whole-tree harvesting has been considered so great that it has to be compensated by fertilizer application. In comparison with harvesting unbarked stem timber, whole-tree harvesting has been found to increase the nutrient loss at the stage of final cutting as follows: N2 to 4 times, P 2 to 5 times, K 1.5 to 3.5 times and Ca 1.5 to 2.5 times. Depending on the conditions prevailing on the site, any one of these nutrients may be the limiting factor for tree growth during the next tree generation

The PDF includes a summary in Finnish.

  • Mälkönen, E-mail: em@mm.unknown (email)

Category : Research article

article id 10016, category Research article
Ivars Kļaviņš, Arta Bārdule, Zane Lībiete, Dagnija Lazdiņa, Andis Lazdiņš. (2019). Impact of biomass harvesting on nitrogen concentration in the soil solution in hemiboreal woody ecosystems. Silva Fennica vol. 53 no. 4 article id 10016. https://doi.org/10.14214/sf.10016
Keywords: nitrogen concentration; stump harvesting; whole-tree harvesting; soil solution; hemiboreal forest; short-rotation coppice
Highlights: Soil solution nitrogen concentrations in whole-tree harvesting sites are higher in sites of medium to high fertility than in sites of low fertility; In whole-tree harvesting and stem-only harvesting sites, soil solution nitrogen concentrations are highest 2 to 3 years after harvesting; The risks of nitrogen leaching immediately after harvesting are higher in traditional forestry systems compared to short-rotation cropping.
Abstract | Full text in HTML | Full text in PDF | Author Info

Considering the increasing use of wood biomass for energy and the related intensification of forest management, the impacts of different intensities of biomass harvesting on nutrient leaching risks must be better understood. Different nitrogen forms in the soil solution were monitored for 3 to 6 years after harvesting in hemiboreal forests in Latvia to evaluate the impacts of different biomass harvesting regimes on local nitrogen leaching risks, which potentially increase eutrophication in surface waters. In forestland dominated by Scots pine Pinus sylvestris L. or Norway spruce Picea abies L. (Karst.), the soil solution was sampled in: (i) stem-only harvesting (SOH), (ii) whole‐tree harvesting, with only slash removed (WTH), and (iii) whole‐tree harvesting, with both slash and stumps harvested (WTH + SB), subplots. In agricultural land, sampling was performed in an initially fertilised hybrid aspen (Populus tremula L.× P. tremuloides Michx.) short-rotation coppice (SRC), where above-ground biomass was harvested. In forestland, soil solution N (nitrogen) concentrations were highest in the second and third year after harvesting. Mean annual values in WTH subplots of medium to high fertility sites exceeded the mean values in SOH subplots and control subplots (mature stand where no harvesting was performed) for the entire study period; the opposite trend was observed for the low-fertility site. Biomass harvesting in the hybrid aspen SRC only slightly affected NO3-N (nitrate nitrogen) and NH4+-N (ammonium nitrogen) concentrations in the soil solution within 3 years after harvesting, but a significant decrease in the TN (total nitrogen) concentration in the soil solution was found in plots with additional N fertilisation performed once initially.

  • Kļaviņš, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia; University of Latvia, Raiņa blvd 19-125, LV 1586, Riga, Latvia E-mail: ivars.klavins@silava.lv (email)
  • Bārdule, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia; University of Latvia, Raiņa blvd 19-125, LV 1586, Riga, Latvia E-mail: arta.bardule@silava.lv
  • Lībiete, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: zane.libiete@silava.lv
  • Lazdiņa, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: dagnija.lazdina@silava.lv
  • Lazdiņš, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: andis.lazdins@silava.lv
article id 933, category Research article
Per-Ola Hedwall, Harald Grip, Sune Linder, Lars Lövdahl, Urban Nilsson, Johan Bergh. (2013). Effects of clear-cutting and slash removal on soil water chemistry and forest-floor vegetation in a nutrient optimised Norway spruce stand. Silva Fennica vol. 47 no. 2 article id 933. https://doi.org/10.14214/sf.933
Keywords: Picea abies; logging residues; forest fertilisation; forest undergrowth; N-retention; nutrient leakage; whole-tree harvest
Abstract | Full text in HTML | Full text in PDF | Author Info
Fertilisation with nutrient optimisation has in Sweden resulted in large increases in volume growth in young stands of Norway spruce. There are, however, environmental concerns about repeated fertilisation and one is the risk of nutrient leakage to ground water resources and aquatic ecosystems after clear-cutting of such forests. The present study followed soil-water chemistry in optimised fertilised stands after clear-cutting, as well as effects of harvest of slash on nutrient leakage. Parts of a 30-year-old stand of Norway spruce, which had been subject to a nutrient optimisation experiment for 17 years, were clear-cut. A split-plot design with whole-tree harvesting as the sub-plot treatment was applied. Lysimeters were installed and soil-water sampled at nine occasions during the following four years. No significant effects of fertilisation on nitrate leaching were found, while harvest of slash reduced the concentration of Ca, DOC, DON, K, Mg, ammonium and nitrate, as well as pH in the soil solution. While no effects of fertilisation could be seen on the soil water concentration of N, the results indicate an interaction between fertilisation and harvest of slash on the concentration of nitrate in the soil solution. The results indicate that forest-floor vegetation plays an important role in the retention of N after clear-cutting of fertilised forests.
  • Hedwall, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), P.O. Box 49, SE-230 53 Alnarp, Sweden E-mail: per-ola.hedwall@slu.se (email)
  • Grip, Department of Forest Ecology and Management, SLU, SE-901 83 Umeå, Sweden E-mail: harald@grip2.se
  • Linder, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), P.O. Box 49, SE-230 53 Alnarp, Sweden E-mail: sune.linder@slu.se
  • Lövdahl, Department of Forest Ecology and Management, SLU, SE-901 83 Umeå, Sweden E-mail: ll@nn.se
  • Nilsson, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), P.O. Box 49, SE-230 53 Alnarp, Sweden E-mail: urban.nilsson@slu.se
  • Bergh, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), P.O. Box 49, SE-230 53 Alnarp, Sweden E-mail: johan.bergh@slu.se
article id 454, category Research article
Paula Jylhä, Olli Dahl, Juha Laitila, Kalle Kärhä. (2010). The effect of supply system on the wood paying capability of a kraft pulp mill using Scots pine harvested from first thinnings. Silva Fennica vol. 44 no. 4 article id 454. https://doi.org/10.14214/sf.454
Keywords: whole-tree harvesting; cut-to-length harvesting; integrated wood harvesting; residual value; whole-tree bundling
Abstract | View details | Full text in PDF | Author Info
The efficiencies of wood supply systems based on cut-to-length (CTL) harvesting, the harvesting of loose whole trees, and whole-tree bundling were compared using the relative wood paying capabilities (WPC) of a kraft pulp mill as decisive criteria. The WPCs from mill to stump were calculated for three first-thinning stands of Scots pine (Pinus sylvestris L.) with mean breast-height diameter of the removal of 6, 8, and 12 cm. Pulp price had a strong effect on the WPC, and the CTL system resulted in the highest WPC per m3 at stump. The savings in procurement costs and gains in energy generation from additional raw material acquired with the harvesting of loose whole trees did not compensate the losses in pulp production. Considering removal per hectare, loose whole trees gave the highest WPCs at stump in the two stands with the smallest trees and the highest proportion of additional raw material. Decrease in pulp price and increase in energy price improved the competitiveness of the whole-tree systems. In the case of whole-tree bundling, savings in transportation costs did not balance the high cutting and compaction costs, and the bundling system was the least competitive alternative.
  • Jylhä, Finnish Forest Research Institute, Kannus, Finland E-mail: paula.jylha@metla.fi (email)
  • Dahl, Aalto University School of Science and Technology, Department of Forest Products Technology, Espoo, Finland E-mail: od@nn.fi
  • Laitila, Finnish Forest Research Institute, Joensuu, Finland E-mail: jl@nn.fi
  • Kärhä, Metsäteho Oy, Helsinki, Finland E-mail: kk@nn.fi
article id 423, category Research article
Olle Rosenberg, Staffan Jacobson. (2004). Effects of repeated slash removal in thinned stands on soil chemistry and understorey vegetation. Silva Fennica vol. 38 no. 2 article id 423. https://doi.org/10.14214/sf.423
Keywords: carbon; nitrogen; thinning; base cations; soil chemistry; understorey vegetation; whole-tree harvesting
Abstract | View details | Full text in PDF | Author Info
The increased interest in harvesting logging residues as a source of bio-energy has led to concerns about the potentially adverse long-term impact of the practice on site productivity. The aim of this study was to examine the effects on soil chemistry (pH, C, N and AL-extractable P, K, Ca and Mg) in three different soil layers (FH, 0–5 cm and 5–10 cm mineral soil) and understorey vegetation after the second removal of logging residues in whole-tree thinned stands. The study was performed at four different sites, established in the period 1984–87, representing a range of different climatic and soil conditions: a very fertile Norway spruce (Picea abies (L.) Karst.) site in south-western Sweden and three Scots pine (Pinus sylvestris L.) sites located in south, south-central and central Sweden. The effects of whole-tree thinning on soil chemistry and understorey vegetation were generally minor and variable. Across all sites the concentrations of Ca and Mg were significantly lower when slash was removed.
  • Rosenberg, Skogforsk – The Forestry Research Institute of Sweden, Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: olle.rosenberg@skogforsk.se (email)
  • Jacobson, Skogforsk – The Forestry Research Institute of Sweden, Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: sj@nn.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles