Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Select issue
Silva Fennica 1926-1997
Acta Forestalia Fennica

Articles containing the keyword 'seedling survival'

Category : Research article

article id 22013, category Research article
Bodil Häggström, Reimo Lutter, Tomas Lundmark, Fredrik Sjödin, Annika Nordin. (2023). Effect of arginine-phosphate addition on early survival and growth of Scots pine, Norway spruce and silver birch. Silva Fennica vol. 57 no. 2 article id 22013.
Keywords: Pinus sylvestris; Betula pendula; Picea abies; forest regeneration; seedling growth; seedling survival; arginine
Highlights: Arginine-phosphate addition (APA) represents a potential tool to aid regeneration of planted trees, especially to increase survival of Scots pine seedlings on sites where susceptible to pests;Effects of APA however varies between different sites.
Abstract | Full text in HTML | Full text in PDF | Author Info
Applying arginine-phosphate (AP) to tree seedlings at planting is a novel silvicultural practice in Northern Europe to improve the success of forest regeneration. We present three case-studies of the potential advantages of adding AP at planting on the establishment and damage susceptibility of seedlings in pure and mixed plantings of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst. ) and silver birch (Betula pendula Roth) over two years in the field. Location of study sites were in southern (S), northeastern (NE) and northwestern (NW) Sweden. The main agents of damage were pine weevil (Hylobius abietis L.) on conifers at the south site, browsing of birch at all sites and browsing/other top damage to conifers at the north sites. The effect of adding AP varied between the sites. It was positive for survival of pine at site S, despite considerable damage by pine weevil. However, at the S site more of the surviving spruce and birch were browsed when treated with AP. At the NE site AP-treatment had positive effects on conifer growth. At the NW site adding AP positively affected survival and growth of all three species, and AP-treated seedlings of all species were less browsed than untreated seedlings. AP treatment presents a potential tool to improve the success of forest regeneration, especially when establishing pine stands in south Sweden.
  • Häggström, Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden ORCID E-mail: (email)
  • Lutter, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia ORCID E-mail:
  • Lundmark, Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden ORCID E-mail:
  • Sjödin, Unit for field-based forest research, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden E-mail:
  • Nordin, Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden ORCID E-mail:
article id 10409, category Research article
Noé Dumas, Mathieu Dassot, Jonathan Pitaud, Jérôme Piat, Lucie Arnaudet, Claudine Richter, Catherine Collet. (2021). Four-year-performance of oak and pine seedlings following mechanical site preparation with lightweight excavators. Silva Fennica vol. 55 no. 2 article id 10409.
Keywords: vegetation control; reforestation; seedling growth; seedling survival
Highlights: Mechanical site preparation (MSP) with lightweight excavators controls highly competitive plant species (Molinia caerulea, Pteridium aquilinum) much more efficiently than MSP with conventional methods; This MSP approach improves four-year survival and growth of pine seedlings, but it is less evident for oak seedlings.
Abstract | Full text in HTML | Full text in PDF | Author Info

Mechanical site preparation methods that used tools mounted on lightweight excavators and that provided localised intensive preparation were tested in eight experimental sites across France where the vegetation was dominated either by Molinia caerulea (L.) Moench or Pteridium aquilinum (L.) Kuhn. Two lightweight tools (Deep Scarifier: DS; Deep Scarifier followed by Multifunction Subsoiler: DS+MS) were tested in pine (Pinus sylvestris L., Pinus nigra var. corsicana (Loudon) Hyl. or Pinus pinaster Aiton) and oak (Quercus petraea (Matt.) Liebl. or Quercus robur L.) plantations. Regional methods commonly used locally (herbicide, disk harrow, mouldboard plow) and experimental methods (repeated herbicide application; untreated control) were used as references in the experiments. Neighbouring vegetation cover, seedling survival, height and basal diameter were assessed over three to five years after plantation. For pines growing in M. caerulea, seedling diameter after four years was 37% and 98% greater in DS and DS+MS, respectively, than in the untreated control. For pines growing in P. aquilinum, it was 62% and 107% greater in the same treatments. For oak, diameter was only 4% and 15% greater in M. caerulea, and 13% and 25% greater in P. aquilinum, in the same treatments. For pines, the survival rate after four years was 26% and 32% higher in M. caerulea and 64% and 70% higher in P. aquilinum, in the same treatments. For oak, it was 3% and 29% higher in M. caerulea and 37% and 31% higher in P. aquilinum. Herbicide, when applied for three or four years after planting, provided the best growth performances for pines growing in M. caerulea and P. aquilinum and for oaks growing in P. aquilinum. For these species and site combinations, DS+MS and DS treatments reduced the neighbouring vegetation cover for one to four years following site preparation.

  • Dumas, Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France E-mail:
  • Dassot, EcoSustain, Environmental Engineering Office, Research and Development, 31, rue de Volmerange, 57330 Kanfen, France; Institut National de l’Information Géographique et Forestière, 1 rue des Blanches Terres, 54250 Champigneulles, France E-mail:
  • Pitaud, Office National des Forêts, Département Recherche Développement et Innovation, route d’Amance, 54280 Champenoux, France E-mail:
  • Piat, Office National des Forêts, Département Recherche Développement et Innovation, 3 rue du petit château, 60200 Compiègne, France E-mail:
  • Arnaudet, Office National des Forêts, Département Recherche Développement et Innovation, 100 boulevard de la Salle, 45760 Boigny-sur-Bionne, France E-mail:
  • Richter, Office National des Forêts, Département Recherche Développement et Innovation, Boulevard de Constance, 77300 Fontainebleau, France E-mail:
  • Collet, Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France ORCID E-mail: (email)

Category : Review article

article id 10172, category Review article
Ulf Sikström, Karin Hjelm, Kjersti Holt Hanssen, Timo Saksa, Kristina Wallertz. (2020). Influence of mechanical site preparation on regeneration success of planted conifers in clearcuts in Fennoscandia – a review. Silva Fennica vol. 54 no. 2 article id 10172.
Keywords: natural regeneration; regeneration chain; seedling growth; coniferous seedlings; disturbed soil surface; seedling survival
Highlights: Mechanical site preparation (MSP) increases seedling survival rates by 15–20%; Survival rates of 80–90% ca. 10 years after MSP and planting conifers are possible; MSP can increase tree height 10–15 years after planting by 10–25%; The increase in growth rate associated with MSP may be temporary, but the height enhancement probably persists.
Abstract | Full text in HTML | Full text in PDF | Author Info

In the Nordic countries Finland, Norway and Sweden, the most common regeneration method is planting after clearcutting and, often, mechanical site preparation (MSP). The main focus of this study is to review quantitative effects that have been reported for the five main MSP methods in terms of survival and growth of manually planted coniferous seedlings of Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) in clearcuts in these three countries. Meta analyses are used to compare the effects of MSP methods to control areas where there was no MSP and identify any relationships with temperature sum and number of years after planting. In addition, the area of disturbed soil surface and the emergence of naturally regenerated seedlings are evaluated. The MSP methods considered are patch scarification, disc trenching, mounding, soil inversion and ploughing. Studies performed at sites with predominately mineral soils (with an organic topsoil no thicker than 0.30 m), in boreal, nemo-boreal and nemoral vegetation zones in the three Fenno-Scandinavian countries are included in the review. Data from 26 experimental and five survey studies in total were compiled and evaluated. The results show that survival rates of planted conifers at sites where seedlings are not strongly affected by pine weevil (Hylobius abietis L.) are generally 80–90% after MSP, and 15–20 percent units higher than after planting in non-prepared sites. The experimental data indicated that soil inversion and potentially ploughing (few studies) give marginally greater rates than the other methods in this respect. The effects of MSP on survival seem to be independent of the temperature sum. Below 800 degree days, however, the reported survival rates are more variable. MSP generally results in trees 10–25% taller 10–15 years after planting compared to no MSP. The strength of the growth effect appears to be inversely related to the temperature sum. The compiled data may assist in the design, evaluation and comparison of possible regeneration chains, i.e. analyses of the efficiency and cost-effectiveness of multiple combinations of reforestation measures.

  • Sikström, Skogforsk, Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail:
  • Hjelm, Skogforsk, Ekebo 2250, SE-268 90 Svalöv, Sweden E-mail: (email)
  • Holt Hanssen, Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, NO-1431 Ås, Norway E-mail:
  • Saksa, Natural Resources Institute Finland (Luke), Juntintie 154, FI-77600 Suonenjoki, Finland E-mail:
  • Wallertz, Swedish University of Agricultural Sciences (SLU), Asa Forest Research Station, SE-360 30 Lammhult, Sweden E-mail:

Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles