Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Mika Nieminen

Category : Article

article id 5634, category Article
Leena Finér, Mika Nieminen. (1997). Dry mass and the amounts of nutrients in understorey vegetation before and after fertilization on a drained pine bog. Silva Fennica vol. 31 no. 4 article id 5634. https://doi.org/10.14214/sf.a8536
Keywords: Pinus sylvestris; biomass; peatlands; ground vegetation; field layer; litter; root systems; bottom layer
Abstract | View details | Full text in PDF | Author Info

Dry mass and nutrient (N, P, K, Ca, Mg, B) contents of field layer vegetation and a combination of bottom layer vegetation and litter (referred to as bottom/litter layer in the text) were studied one year before and three years after fertilization (NPK and PK) on a drained low-shrub pine bog in eastern Finland. The results of an earlier study on the tree layer were combined with those of this study in order to estimate the changes caused by fertilization in the total plant biomass and litter. Before fertilization the average dry mass of the field and bottom/litter layers was 8,400 kg ha-1 and 7,650 kg ha-1, respectively. The above-ground parts accounted for 25% of the total field layer biomass. The dry mass of the field and bottom/litter layers together was < 20% of the dry mass accumulated in the total plant biomass and litter. The corresponding figures for N, P, K, Ca, Mg and B were 44%, 38%, 30%, 38%, 31% and 17%, respectively. Fertilization did not significantly affect the dry mass of either the field layer vegetation or the bottom/litter layer. 33% of the applied P was accumulated in the total plant biomass and litter on the PK-fertilized plots, and 25% on the NPK-fertilized plots. For the other elements, the proportions on the PK-fertilized plots were K 31%, Ca 6%, Mg 11% and B 13%. On the NPK-fertilized plots, the corresponding figures were N 62%, K 32%, Ca 6%, Mg 9% and B 13%. Except for B and K, the accumulation of fertilizer nutrients in the understorey vegetation and litter was of the same magnitude or greater than the uptake by the tree layer.

  • Finér, E-mail: lf@mm.unknown (email)
  • Nieminen, E-mail: mn@mm.unknown

Category : Research article

article id 10494, category Research article
Hannu Hökkä, Ari Laurén, Leena Stenberg, Samuli Launiainen, Kersti Leppä, Mika Nieminen. (2021). Defining guidelines for ditch depth in drained Scots pine dominated peatland forests. Silva Fennica vol. 55 no. 3 article id 10494. https://doi.org/10.14214/sf.10494
Keywords: Pinus sylvestris; forest management; peatland; drainage; ditch network maintenance; process model; water table
Highlights: Process-based hydrological model was applied to drained peatland forests representing a wide range of conditions in Finland; Ditch depth keeping the median July–August water table below 0.35 m was defined; Ditch depth depended on climatic conditions, stand volume, peat properties, and ditch spacing; Shallower ditches than recommended in practice proved to be sufficient in most situations.
Abstract | Full text in HTML | Full text in PDF | Author Info

We used a process-based hydrological model SUSI to improve guidelines for ditch network maintenance (DNM) operations on drained peatland forests. SUSI takes daily weather data, ditch depth, strip width, peat properties, and forest stand characteristics as input and calculates daily water table depth (WTD) at different distances from ditch. The study focuses on Scots pine (Pinus sylvestris L.) dominated stands which are the most common subjects of DNM. Based on a literature survey, and consideration of the tradeoffs between forest growth and detrimental environmental impacts, long term median July–August WTD of 0.35 m was chosen as a target WTD. The results showed that ditch depths required to reach such WTD depends strongly on climatic locations, stand volume, ditch spacing, and peat thickness and type. In typical ditch cleaning areas in Finland with parallel ditches placed about 40 m apart and tree stand volumes exceeding 45 m3 ha–1, 0.3–0.8 m deep ditches were generally sufficient to lower WTD to the targeted depth of 0.35 m. These are significantly shallower ditch depths than generally recommended in operational forestry. The main collector ditch should be naturally somewhat deeper to permit water outflow. Our study brings a firmer basis on environmentally sound forestry on drained peatlands.

  • Hökkä, Natural Resources Institute Finland (Luke), Natural resources, Latokartanonkaari 9, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: hannu.hokka@luke.fi (email)
  • Laurén, University of Eastern Finland, Faculty of Science and Forestry, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: ari.lauren@uef.fi
  • Stenberg, Natural Resources Institute Finland (Luke), Natural resources, Latokartanonkaari 9, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: leena.stenberg@luke.fi
  • Launiainen, Natural Resources Institute Finland (Luke), Bioeconomy and environment, Latokartanonkaari 9, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: samuli.launiainen@luke.fi
  • Leppä, Natural Resources Institute Finland (Luke), Bioeconomy and environment, Latokartanonkaari 9, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: kersti.leppa@luke.fi
  • Nieminen, Natural Resources Institute Finland (Luke), Natural resources, Latokartanonkaari 9, P.O. Box 2, FI-00791 Helsinki, Finland E-mail: mika.nieminen@luke.fi
article id 161, category Research article
Mika Nieminen, Erkki Ahti, Harri Koivusalo, Tuija Mattsson, Sakari Sarkkola, Ari Laurén. (2010). Export of suspended solids and dissolved elements from peatland areas after ditch network maintenance in south-central Finland. Silva Fennica vol. 44 no. 1 article id 161. https://doi.org/10.14214/sf.161
Keywords: drained peatlands; forestry; ditching; hydrochemistry; nutrient export; suspended solids
Abstract | View details | Full text in PDF | Author Info
In Finland nearly 6 million hectares of peatlands are drained for forestry purposes. Ditch network maintenance in the drained peatlands, i.e. cleaning old ditches or digging complementary ditches, deteriorates surface water quality by increasing the export of dissolved elements and suspended solids (SS). Effect of ditch network maintenance on the export of SS, dissolved organic carbon (DOC), and dissolved nitrogen (N), phosphorous (P), iron (Fe), aluminum (Al) and manganese (Mn) was studied in nine pairs of treated and control (no maintenance) catchments located in southern and central Finland. In this study we extended the paired catchment approach by combining data from several catchments and identifying the treatment effect on SS and element loads from the entire dataset. Following the method of Laurén et al. (2009) we identified how uncertainty in correlation between treatment and control catchments during pre-treatment period is reflected in the estimated treatment effect on SS and element loads. In the experiment, the export of SS increased significantly for the four year study period following the ditch network maintenance and Al export increased for one year. The export of N, P and Fe was not significantly changed and DOC and Mn export decreased after the ditch maintenance operation.
  • Nieminen, Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: mika.nieminen@metla.fi (email)
  • Ahti, Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: ea@nn.fi
  • Koivusalo, Department of Civil and Environmental Engineering, Aalto University School of Science and Technology, P.O. Box 15200, FI-00076 Aalto, Finland E-mail: hk@nn.fi
  • Mattsson, Finnish Environment Institute, P.O. Box 140, FI-00251 Helsinki, Finland E-mail: tm@nn.fi
  • Sarkkola, Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: ss@nn.fi
  • Laurén, Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: al@nn.fi
article id 253, category Research article
Riitta Väänänen, Mika Nieminen, Martti Vuollekoski, Hannu Nousiainen, Tapani Sallantaus, Eeva-Stiina Tuittila, Hannu Ilvesniemi. (2008). Retention of phosphorus in peatland buffer zones at six forested catchments in southern Finland. Silva Fennica vol. 42 no. 2 article id 253. https://doi.org/10.14214/sf.253
Keywords: peatland; buffer zone area; phosphorus; retention
Abstract | View details | Full text in PDF | Author Info
Our current knowledge of the P retention efficiency of peatland buffer zone areas used to reduce sediment and nutrient leaching from forestry areas is insufficient. Especially the role of P sorption by soil in buffer zones needs closer examination as there is considerable variation in the efficiency of P retention. Six sites in southern Finland were chosen for the study. The buffer zone areas varied between 0.1–4.9% of the catchment area. A total of 10 kg of solute PO4–P was added to the inflow of the buffer zone areas and the concentrations of PO4–P in inflow and outflow were measured for 2–4 years. P retention characteristics of the surface peat were determined with sorption-desorption isotherms before and after PO4–P addition and the effective buffer zone area over which the added P was spread was determined from soil water samples. P retention in the two largest buffer zone areas was complete (100% retention), and the third largest buffer retained 94%. Retention in the three smallest buffer zones was 24%, 95% and 95% of the added P. As a result of P addition reduction in peat P retention capacity was detected in three out of four cases. The effective buffer zone area varied from 67% to 100% of the total buffer zone area. Factors contributing to efficient P retention were large buffer size and low hydrological load whereas high hydrological load combined with the formation of preferential flow paths, especially during early spring or late autumn was disadvantageous. High P retention capacity in peat contributed to the sustainability of P retention. The study showed that even relatively small buffer zone areas are able to efficiently reduce P load.
  • Väänänen, Department of Forest Ecology, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: riitta.vaananen@helsinki.fi (email)
  • Nieminen, Finnish Forest Research Institute, Vantaa Research Unit, Finland E-mail: mn@nn.fi
  • Vuollekoski, Finnish Forest Research Institute, Vantaa Research Unit, Finland E-mail: mv@nn.fi
  • Nousiainen, Finnish Forest Research Institute, Vantaa Research Unit, Finland E-mail: hn@nn.fi
  • Sallantaus, Finnish Environment Institute, Nature Division, Helsinki, Finland E-mail: ts@nn.fi
  • Tuittila, Department of Forest Ecology, University of Helsinki, Finland E-mail: est@nn.fi
  • Ilvesniemi, Finnish Forest Research Institute, Vantaa Research Unit, Finland E-mail: hi@nn.fi
article id 280, category Research article
Mika Nieminen, Mikko Moilanen, Sirpa Piirainen. (2007). Phosphorus allocation in surface soil of two drained peatland forests following wood and peat ash application – why effective adsorption on low sorptive soils? Silva Fennica vol. 41 no. 3 article id 280. https://doi.org/10.14214/sf.280
Keywords: forestry; ash fertilization; peat; aluminium; iron; phosphorus adsorption; phosphorus fractionation
Abstract | View details | Full text in PDF | Author Info
Fertilization of drained peatland forests with wood ash and different commercial phosphorus fertilizers (calcium phosphates) generally give similar stand growth responses. However, it has been shown that use of calcium phosphate fertilizers generally lead to highly increased P release to recipient water courses. On the other hand, no corresponding release has been reported after ash fertilization. Soil samples from the surface peats from a nutrient poor and a fertile drained peatland site were collected before and 1–4 years after application of five different types of ash products. The changes over time in the different chemical forms of P in the substrate were studied. The results indicated that the reason for the low liability to leaching of ash fertilizers was that significant amounts of P are adsorbed by Al and Fe during weathering of the ash fertilizers. However, further studies are needed to clarify whether the adsorption of P occurs with the Al and Fe of the ash or the native Al and Fe compounds present in soil before ash fertilization.
  • Nieminen, Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: mika.nieminen@metla.fi (email)
  • Moilanen, Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: mm@nn.fi
  • Piirainen, Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: sp@nn.fi
article id 371, category Research article
Mika Nieminen, Erkki Ahti, Hannu Nousiainen, Samuli Joensuu, Martti Vuollekoski. (2005). Capacity of riparian buffer zones to reduce sediment concentrations in discharge from peatlands drained for forestry. Silva Fennica vol. 39 no. 3 article id 371. https://doi.org/10.14214/sf.371
Keywords: ditching; suspended solids; peatlands; erosion; riparian buffer zones; water quality protection
Abstract | View details | Full text in PDF | Author Info
In 1995–2001, the efficiency of riparian buffer zone areas to reduce the concentrations of suspended solids in discharge from peatlands drained for forestry purposes was studied at 7 locations in south-central Finland. The two largest buffer zones reduced the concentrations of suspended solids by > 70%. The efficiency of the three medium-sized buffer zones to reduce through-flow sediment concentrations was 50–60%, but no reduction occurred at the smallest two buffer areas. Thus, the capacity of buffer zones to reduce sediment concentrations was strongly related to their size. However, significant correlations were also found between reduction capacity and inflow water sediment concentrations, although the correlations at the two smallest buffer zones were low. The use of buffer zones in reducing sediment load from peatlands drained for forestry purposes is recommended, but relatively large areas for efficient removal capacity are needed.
  • Nieminen, Finnish Forest Research Institute, Vantaa Research Centre, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: mika.nieminen@metla.fi (email)
  • Ahti, Finnish Forest Research Institute, Vantaa Research Centre, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: ea@nn.fi
  • Nousiainen, Finnish Forest Research Institute, Vantaa Research Centre, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: hn@nn.fi
  • Joensuu, Forestry Development Centre Tapio, Soidinkuja 4, FI-00700 Helsinki, Finland E-mail: sj@nn.fi
  • Vuollekoski, Finnish Forest Research Institute, Vantaa Research Centre, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: mv@nn.fi
article id 413, category Research article
Mika Nieminen, Timo Penttilä. (2004). Inorganic and organic phosphorus fractions in peat from drained mires in northern Finland. Silva Fennica vol. 38 no. 3 article id 413. https://doi.org/10.14214/sf.413
Keywords: tree growth; drained peatland forests; phosphorus availability; sequential fractionation; site type classification
Abstract | View details | Full text in PDF | Author Info
Soil samples from 15 eutrophic, 26 herb-rich, 15 tall-sedge, and 11 low-sedge drained peatland sites were analysed for easily soluble and aluminum, iron, and calcium bound phosphorus (P) using the Chang and Jackson sequential fractionation method. Compared to earlier investigations, where only total and easily soluble P contents (e.g. NH4OAc or dilute H2SO4 extractable P) in peat have been analysed, significantly higher differences between sites were observed. The eutrophic sites were characterized by four to six-fold greater Ca-bound organic P and two to three-fold greater Ca-bound inorganic P contents than on the other three site type groups, whereas the average Al-bound inorganic P content of the eutrophic sites was only one-third of that at the other site types. Substantial differences between sites were also observed for Fe-bound inorganic P, i.e. two to four-fold greater Fe-P contents were measured at the herb-rich sites compared with the other three site type groups. The stand volume growth in the 67 studied drained peatland sites correlated significantly with Al-bound organic P and Fe-bound inorganic and organic P. The study showed that a detailed fractionation and discrimination of different forms of soil P is important in increasing the understanding of the relationship between P availability and vegetation community types and stand growth on drained peatlands.
  • Nieminen, Finnish Forest Research Institute, Vantaa Research Centre, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: mika.nieminen@metla.fi (email)
  • Penttilä, Finnish Forest Research Institute, Vantaa Research Centre, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: tp@nn.fi
article id 422, category Research article
Mika Nieminen. (2004). Export of dissolved organic carbon, nitrogen and phosphorus following clear-cutting of three Norway spruce forests growing on drained peatlands in southern Finland. Silva Fennica vol. 38 no. 2 article id 422. https://doi.org/10.14214/sf.422
Keywords: hydrochemistry; forest regeneration; peatland forestry; leaching; nutrient losses
Abstract | View details | Full text in PDF | Author Info
The effect of clear-cutting on the concentrations of dissolved organic carbon (DOC), organic nitrogen (DON), NH4+, NO3–, and P in outflow water from three productive, Norway spruce dominated drained peatlands (RCC, VCC-1, VCC-2) were studied. Changes in runoff and transport loads (concentration x runoff) at two of the catchments during the frost-free period are also presented. Approximately 40% of the area was cut at RCC and VCC-2, and 72% at VCC-1. The volume removed was 250 m3 ha–1 at RCC, 259 m3 ha–1 at VCC-1, and for VCC-2, 317 m3 ha–1. The mean annual increase in outflow concentrations of DOC during the first four years after clear-cutting was 9.0 mg l–1 at RCC, 22.8 mg l–1 at VCC-1 and 8.4 mg l–1 at VCC-2. Corresponding increases in the forms of nitrogen were: 0.23, 0.51 and 0.16 mg DON l–1; 0.06, 0.31 and 0.04 mg NH4+-N l–1; and 0.05, 0.12 and 0.22 mg NO3–-N l–1. Clear-cutting did not significantly (p > 0.05) increase P concentrations. The increase in non-frost season runoff over the first three years after clear-cutting was 107 mm at RCC and 207 mm at VCC-1. The export loads of DOC during the non-frost season increased by 80 kg ha–1 at RCC and by 184 kg ha–1 at VCC-1 over the first three years. Corresponding increases for the other studied solutes were: 1.78 and 3.98 kg DON ha–1; 0.39 and 1.49 kg NH4+-N ha–1; 0.45 and 0.48 kg NO3–-N ha–1, and 0.09 and 0.06 kg P ha–1. The study demonstrated that clear-cutting may significantly increase the export of DOC and different forms of nitrogen from drained productive peatlands while only small increases in phosphorus export may occur.
  • Nieminen, Finnish Forest Research Institute, Vantaa Research Centre, P.O. Box 18, FIN-01301 Vantaa, Finland E-mail: mika.nieminen@metla.fi (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles