Current issue: 58(4)
The study proposes a technique which enables the computation of user-defined indices for species diversity. These indices are derived from characteristics, called diversity indicators, of inventory plots, stand compartments, and the whole forest holding. The study discusses the modifications required to be made to typical forest planning systems due to this kind of biodiversity computation. A case study illustrating the use of the indices and a modified forest planning system is provided. In the case study, forest-level species diversity index was computed from the volume of dead wood, volume of broadleaved trees, area of old forest, and between-stand variety.
At the stand level, the area of old forest was replaced by stand age, and variety was described by within-stand variety. All but one of the indicators were further partitioned into two to four sub-indicators. For example, the volume of broadleaved trees was divided into volumes of birch, aspen, willow, and other tree species. The partial contribution of an indicator to the diversity index was obtained from a sub-priority function, determined separately for each indicator. The diversity index was obtained when the partial contributions were multiplied by the weights of the corresponding indicators and then were summed. The production frontiers computed for the harvested volume and diversity indices were concave, especially for the forest-level diversity index, indicating that diversity can be maintained at satisfactory level with medium harvest levels.
Process-based tree growth models are recognized to be flexible tools which are valuable for investigating tree growth in relation to changing environment or silvicultural treatments. In the context of forestry, we address two key modelling problems: allocation of growth which determines total wood production, and distribution of wood along the stem which determines stem form and wood quality. Growth allocation and distribution are the outcome of carbon translocation, which may be described by the Munch theory. We propose a simpler gradient process to describe the carbon distribution in the phloem of conifers. This model is a reformulation of a carbon diffusion-like process proposed by Thornley in 1972. By taking into account the continuity of the cambium along the stem, we obtain a one-dimensional reaction-diffusion model which describes both growth allocation between foliage, stem and roots, and growth distribution along the stem. Distribution of wood along the stem is then regarded as an allocation process at a smaller scale. A preliminary sensitivity analysis is presented. The model predicts a strong relationship between morphology and foliage-root allocation. It also suggests how empirical data, such as stem analysis, could be used to calibrate and validate allocation rules in process-based growth models.
Seedlings of Picea abies (L.) H. Karst. full-sib families of contrasting origins were cultivated in a phytotron under different photoperiodic, light-intensity and temperature treatments during their first growth period. The effects of the treatments on juvenile growth traits – whether enhanced or delayed maturation was induces – were observed during the two subsequent growth periods. The following hypotheses were tested: (A) Enhanced maturation can be induced in the first growth period from sowing with (i) a long period of continuous light during active growth (24 weeks vs. 8 weeks); (ii) a shorter night during bud maturation (12 h vs. 16 h); high temperature (25°C vs. 20°C) during (iii) active growth, growth cessation and bud maturation; and during (iv) the latter part of growth cessation and bud maturation only. (B) Delayed maturation can be induced after (i) low light intensity during growth cessation and bud maturation (114 μmol m-2 s-1 vs. 340 μmol m-2 s-1); low temperature (15°C vs. 20°C) during (ii) active growth, growth cessation and bud maturation; and during (iii) the latter part of growth cessation and bud maturation only.
The most dramatic effect was observed after 24 weeks of continuous light during active growth. All traits showed a significantly more mature performance in the second growth period compared with the control. The effect for all but one trait was carried over to the third growth period. This is in accordance with the hypothesis that the activity of apical shoot meristems controls the maturation process. For the other treatments there was only weak or no support for the hypothesis of induction of enhanced or delayed maturation. Strong family effects were observed for all traits. Differential responses of the various latitudinal families were observed, suggesting that family effects must be considered to predict and interpret correctly how plants will respond to environmental effects.
The paper, presented at the seminar ”Forestry in Europe: Implications of European Integration for National Forestry”, discusses the effects of first Forestry Action Programme in the European Community, UNCED 1992, the European Community’s new Forestry Strategy and the second Forestry Action Programme directives of conservation of habitats on forestry within the EC.
Studies of phenotypic as well as mixed population plasticities are urgently needed in a world that supposedly experiences a gradual change of its environment. It is important to understand that man creates his environment and silviculture. This is one of the reasons why for breeding it cannot be expected to find optimal phenotypes in nature. Other reasons are the phylogenetic constraints and migration of pollen and seeds.
Forest genetics up to now is characterized by the study of one trait at a time. There is an urgent need for simultaneous analysis of several traits by the aid of genetic correlations or multivariate analysis. Generally there is a need for inclusion of larger numbers of genetic entries in forest genetic investigations.
For the long-rotation-time species there is a need to determine the curves for degree of dormancy and hardiness during the annual cycle. Information of plasticity in two-dimensional environments like water availability and temperature is needed. Studies on nutrient utilization and acquisition will tell us whether or not we must have different breeding populations for different soil fertilities. An understanding of the phase changes between juvenile and adult opens up possible applications such as faster generation turn-over in the breeding population via early flowering and early testing as well as better plants for frost-prone and weedy sites.
A third generation of forest tree gas exchange measuring system design for the use in the field is described. The system is designed to produce data for determining the dependence of the rate of tree photosynthesis, respiration and transpiration on environmental factors. The system consists of eight cuvettes, a tubing system, two infrared gas analysers, an air flow controller, a data logger, and a computer. The measuring cuvette is a clap type, i.e. it is mostly open, only closing during measurement. CO2 exchange is measured as the change in the cuvette concentration of CO2, and, transpiration is measured as the increase in water vapour concentration while the cuvette is closed. The environmental factors measured are temperature, irradiance and air pressure. The system was planned in 1987 and constructed in 1988. It worked reliably in late summer 1988 and the quality of data seems to be satisfactory.
The PDF includes an abstract in Finnish.
The model computations indicate that the climatic change in the form of higher temperatures and more precipitation could increase the productivity of the forest ecosystem and lead to higher rates of regeneration and growth. More frequent and intensive thinnings are needed to avoid the mortality of trees induced by accelerated maturation and attacks of fungi and insects. The climatic change could support the dominance of deciduous tree species and necessitate an intensification of the tending of seedling stands of conifers. The rise of air temperature during autumn and winter could change also the annual growth rhythm of trees and result in dehardening and subsequent frost damages and attacks of insects and fungi. The pest management could be the greatest challenge to the future silviculture, which could be modified most in Northern Finland.
The PDF includes an abstract in Finnish.
The earliest manor parks, which are a special form of cultivated forests, were created at the end of the 18th century. The surrounding of the main buildings was divided into two parts, an aesthetic park and yard serving household and economic purposes. Early in the 19th century, large parks were created which represented dominant aesthetic ideals but, on the other hand, formed a ”wild” counterpart to the structured inner world of the main building. A good example is Ratula Manor and its park, which represent the diversity of the cultivated forest of the 19th century manors.
The paper is based on a lecture given in the seminar ‘The forest as a Finnish cultural entity’, held in Helsinki in 1986. The PDF includes a summary in English.
The paper describes some examples from Paris and Helsinki areas, where trees are essential landscape elements. It is typical in France to plant trees around town squares, market places and along streets and roads. In Finland trees are almost always kept close to the house, together with other vegetation protecting the entrance and windows. These traditional uses of trees should be studied to serve landscape management.
The paper is based on a lecture given in the seminar ‘The forest as a Finnish cultural entity’, held in Helsinki in 1986. The PDF includes a summary in Finnish.
This paper designs an Economy-Welfare-Environment Adjustment System model (EWEAS model or EWE model in short) which consists of the circular flow of the economic, the welfare, and the environment system of forestry. That is, this model builds the relationship between the systems for material wealth and that for mental wealth.
The EWE model is designed as a complete open system model which describes the economy-welfare-environment circular system in forestry by linking up the internal system of forestry with the surrounding external systems. The EWE model can be manipulated as a policy formation or a policy decision model, and it is available for policy evaluation in the economic, the welfare and the environmental phase of forestry. The model is a basic simulation system model which is reliable in its reproductive fitness, stability and universality. Thus, this model ought to be useful in any country in the world as well as in Japan.
Land use problems are very often a serious obstacle to forestry development in several countries of both developed and developing world. To overcome these problems an integrated land use policy is needed for designing and implementing innovative programs aimed at the integrated development of forestry with other land uses and the social, cultural, political, ecological and economic environment involved. Policy analysis can assist in the success of such programs by identifying the people’s needs and concerns, by gathering information about land capacity, land tenure and the traditional production systems, by testing alternative polices and by evaluating the programs after their implementation so that the necessary readjustments are made.
A comparison study concerning the effects of acid rain on Scots pine (Pinus sylvestris L.) seedlings has been performed. Two different X-ray fluorescence methods, PIXE and IXRF, were employed to produce multielement analyses of the samples. Seedlings were treated for 3 months with watering of pH=7 or pH=3 liquids on the needles and on the roots. One year and two years old needles of the seedlings were inspected for changes in photosynthetic rate as well as for changes in elemental concentrations.
Twelve elements from Si to Zn were compared in the samples. The PIXE results show that the amounts of most of these elements in the needles of the seedlings grown in sand increase, when treated with acid water. This growth is clearer when the roots are treated with acid water. The elemental concentrations of the needles in the seedlings grown in soil on the other hand decrease slightly.
Fertilizer factory has been found to be harmful to the surrounding area through its fertilizing effect, mainly due to nitrogen compounds in the form of NOx and ammonium. In this study, pH, K, Ca and Mg contents in the humus layer were monthly monitored around a fertilizer industry in Oulu, Northern Finland, in 1975 and 1976. In addition, nutrient analyses were made in the leaves of Vaccinium vitis-idaea, V. myrtillus and Empetrum Nigrum.
The calcium, magnesium and potassium present in the emission of airborne fertilizer dust brought about an increase of the nutrient content of the surface top soil humus compared with the control samples. The nutrient contents of dwarf shrub leaves increased near the industrial site as compared with the controls. The potassium contents of Vaccinium myrtillus and Empetrum nigrum were exceptionally high. The results of this pilot study show that the overfertilization must have had an increasing effect on the nutrient status changes in the forest environment.
A model was constructed, the aim of which was to predict growth under conditions where air pollutants are present. The model is based on photosynthesis and on the allocation of photosynthetic products for growth. It is assumed that air pollutants released during energy production mainly affect photosynthesis in two ways: 1) directly by injuring the photosynthetic mechanism, and 2) indirectly by leaching nutrients. The two ways were studied empirically in order to identify a sub-model for the photosynthesis of a plant exposed to air pollutants.
The stand model will be applied to two purposes. The present stage of forests in Finland is compared with the simulated state based on the assumption that no pollutants are present. In addition, the decrease in forest yield under different conditions derived from predictions about long-range pollutant transport in Europe is analysed.
A method to determine sulphur as sulphate has been applied to search for surface concentration of sulphate sulphur on needle samples. The method is based on reducing sulphates as volatile hydrogen sulphide gas by using hydriodic acid. The hydrogen sulphide gas is swept with nitrogen into an absorbent solution. Sulphide ion concentration in solution is then measured using ion selective electrodes.
The method was applied on one to four years old needle samples collected from Scots pine (Pinus sylvestris L.) at 0.9 to 15.9 km distances from a 1,064 MW coal-fired power plant in Southern Finland. Surface sulphate values found in the samples closer than 4 km to the power plant were 50 to 100% higher than a nearly constant background level. No significant variation of values with needle age was found. The advantages of the method compares to other methods for sulphur determination are speed, reasonable sensitivity and low detection limit.
Scanning Electron Microscopy was used to study structural changes in epicuticular vax of Pinus sylvestris L. with time. Changes in the contact angle of water droplets and in cuticular transpiration were also measured. By using material from a polluted and an unpolluted site it was shown that the ageing process occurs faster on polluted air, leading to greater cuticular transpiration and smaller contact angles at polluted sites.
Increased prices on oil have resulted in the search for alternative energy sources, e.g. coal, peat, biomass, different types of waste. Combustion especially of waste, coal and peat emits large quantities of air pollutants such as heavy metals but also harmful organic substances. Heavy metals are not easily separated from the smoke, and the concentrations are often high in the emissions even with advanced fly-ash separators.
Ecological investigations carried out around a coal burning power plant in Finland using mosses and pine needles as parameters are presented in the paper. Increased concentrations of Pb, Cd, Cr, Ni, Cu and V have been found near the plant. Often a clear gradient was found with increased concentrations at decreased distance from the power plant.
Air-borne Cu and Zn from a brass foundry at Gusum, SE Sweden, have considerably disturbed the lichen and bryophyte vegetation in the coniferous forest environment. The occurrence of lichens on Norway spruce twigs decreased rapidly with increasing Cu concentrations in Hypogymnia physodes above 90 ppm (background value 10–15). The epiphytic vegetation is reduced within 2–3 km from the foundry. Only stunted individuals occur in the close vicinity of the pollution source.
The cover of one of the quantitatively most important mosses, Hylocomnium splendens, is greatly reduced by the heavy-metal deposition. Cover values of 20–50% are not uncommon in distant sites (Cu concentration 15–35 ppm). There is a significant negative correlation between Cu concentration in the moss and its cover. The moss cannot survive much more than ca. 130 ppm Cu (and 360 ppm Zn). Live individuals are no more found within 1.5 km from the foundry.
Monitoring of heavy metal accumulation in plants has been used to reflect the deposition of heavy metals in terrestrial ecosystems. In some cases, the accumulation rates in plants are linearly correlated to deposition measured as bulk precipitation collected in funnel samplers. It is uncertain, however, how large the contribution due to adsorption/impaction of small particles is to this relationship. The need for design of enlightening experiments on deposition rates in different vegetation types and their relation to immission and bulk precipitation data is discussed.
Information on input of acidifying compounds like SO2 and NOx is necessary to understand effects of acidification. The uptake on NO and NO2 respectively was studied on seedlings and shoots of Scots pine (Pinus sylvestris L.). Experiments were conducted both in laboratory (NO and NO2 respectively) and in the field (NO2) under light and dark conditions. In all three cases there was a linear relationship between the uptake rate and the NOx-concentration. The uptake follows a diurnal pattern i.e. the uptake rate was strongly correlated with the stomatal movements. Uptake rates were converted to deposition rate and the results showed that field exposure with NO2 gave the higher deposition rate.
The water in different parts of a plant forms a continuum throughout the plant body. This makes it possible to record changes in the water content as changes in thickness of any part of the plant. A leaf kept in darkness has been found to change its thickness to a sufficient degree for recordings of changes in transpiration from the rest of the plant. The rapidness of the changes makes it probable that they are mirroring the stomatal movements.
The method has been used for recording of influences of SO2 as air pollutant. It has a couple of advantages over direct measurements of changes in transpiration. One is that the measurement can be used without enclosing the plant in a cuvette. Another is that possibly occurring effects on the hygrometer are eliminated. The method has until now mainly been used for wheat plants but also woody plants as Pinus and Salix have been tested.
Natural forest tree populations are adapted to their natural environment. Forest tree species under northern conditions are at the edge of their range where the short growing season and the low winter temperatures are the two main factors limiting their ecological niche. Effects of air pollution on the ecological niche, designated as the environmental conditions that permit a population to survive permanently, are discussed according to G.E. Hutchinson’s concept of the ecological niche. Air pollution as an additional stress factor influences the ecological niche either by the direct influence as an additional dimension of the ecological niche or by interaction with the other dimensions. These interactions are especially important for low level long-term effects of air pollution which can result in reduced resistance to low winter temperature or, due to reduced net assimilation, reduced capability to survive the long period of winter dormancy. These effects influence the boundary of the ecological niche and reduce the area of the biotope of the respective species.
Within the remaining biotope genetic changes in forest tree species take place. Due to individual differences in exposure and susceptibility of trees to air pollution, higher and therefore more exposed trees as well as more susceptible trees will be reduced in reproduction or even be eliminated. This causes genetic changes in the tree population.
The symposium of ’Air pollutants as additional stress factors under northern conditions’ was held in Oulu in Northern Finland during November 11–13, 1980. The symposium had four sessions: 1) the ecophysiology of air pollution effects and long-term risks of air pollution effects, 2) bioindication in forest ecosystems, 3) particle and metal problems, and 4) a general poster session mainly related to current research, and the results of the research programme on the dispersion and effects of air pollutants in forest environments financed by the Academy of Finland. Most of the posters and papers presented at the symposium have been included in the proceedings. The rest of the results presented are reviewed in research report of the programme and in the related scientific papers.
The PDF includes a summary in Finnish.
The paper discusses the theoretical basis of quantitative analysis of the effect of genotype and environment in forest trees. Perhaps the main problem in the understanding of the laws of intrapopulation variability of the species of woody forest plants is the study of the structure of their populations. It may be characterized by a number of parameters. The intrapopulation variability of quantitative characteristics appears as a result of environmental and genetic factors, but to determine the relative weight of these factors in a concrete case is not easy. The study of the structure of a population by its quantitative characteristics has a wider task: to establish the relevance of the hereditary differences of the individuals of a population. Also, the differences caused by diverse growth conditions and how they are reflected in the level of general phenotypic variability of the quantitative characteristics in a given population has to be identified. The author gives examples of assessment of heritability in forest trees.
The PDF includes a summary in Finnish.
Traditionally, European forest education has emphasized environmental conservation. Forest education reflects the needs of society. After the industrial revolution, rapidly growing forest industries needed an increasing amount of wood, and the emphasis of forestry education was on timber production on the basis of sustained yield, and on efforts for progressively raising yields.
The technical and economic development of the recent decades introduced two themes in the environmental content of forest education: 1) The changing role of forests in society increase importance of protection and recreational functions of forests, and 2) modern technology has caused great changes in the forestry itself. These changes have to be taken into account also in the forest education. The environmental content of forest education can be divided into two broad fields, the ecological basis and environmental influences of various forest operations, and forest management for non-production uses. In both fields university curricula include a) basic courses, obligatory for all forestry students, b) optional courses, and c) advanced courses for higher degrees.
The PDF includes a summary in Finnish.
A system for measuring the net photosynthesis, transpiration and environmental factors within the canopy and ground cover vegetation is described. The system operates continuously throughout the growing season in a young Scots pine (Pinus sylvestris L.) stand. A data-logging unit controls the system and carries out the measurements on the readings of the sensors of photosynthesis, transpiration, light intensity outside the canopy, light climate inside the assimilation chambers, and dry and wet temperatures from selected points. These measurements are shown digitally and automatically punched onto paper tape.
The PDF includes a summary in Finnish.
In the densely populated Central Europe, forestry has always had different functions than in Scandinavia or Canada. Today the increasing pressures on the environment and more numerous demands of the people have put emphasis on environmental management and the demands of recreation in forest management practiced in the area. This paper outlines the trends in the utilization of forests in Central Europe, and especially in the Federal Republic of Germany, due to these changing targets. The regulations concerning forestry in Baden-Würtenber, and the forest plan of the Bavarian state forests are used as an example to clarify the principals of forest management and planning.
In the article some aspects concerning the measurement of environmental factors are discussed. Special attention is given to the following questions: The correct way of determining the active surface in a forest ecosystem, the time factor in measurement processes, and the mutual correlative relationships between the environmental factors. Analysis of the data is also taken into consideration.
The PDF includes a summary in English.
The purpose of forestry has hitherto been seen mainly as economic conservation, i.e. the use and management of timber resources on a sustainable yield basis. Along with the rising standard of living, however, amenity values of the environment will become more appreciated, which means that forestry and forest industries will be concerned with conservation of immaterial resources of nature as well. Since inland lakes cover some 10% of the surface area of Finland, and forests occupy more than 70% of the land area, forests and lakes are essential constituents of the Finnish environment during both work and leisure.
The main task of the pulp and paper industry in conservation is the control of water pollution. Today some 10% of Finnish lakes are polluted. Pulp and paper industries contribute 75% of the total waste water load of the Finnish lakes. Increasing water pollution can be prevented by improved processing technology, waste water treatment, and economic use of industrial wastes. Thus, the waste water load of the lakes has not increased in the last 10 years, despite doubling of pulp and paper production. According to the prognoses, by the year 2000 the waste water load from pulp and paper industries will be reduced to one half or one fourth of the present level although the capacity will still be increasing.
In forest management more emphasis should be paid on the aesthetic and recreational values of forests. Along with increasing leisure the need for recreational areas is growing. Scenic and recreational aspects must be considered in the management of industrial forests, too. With wise management, high timber yield is compatible with the maintenance of an enjoyable environment. Good silviculture takes account of timber production, wildlife management and landscape architecture simultaneously. National forestry development programs must be based on the principle of the multiple use of forests.
The PDF includes a summary in English.
Silva Fennica issue 52 includes presentations held in professional development courses, arranged for foresters working in public administration in 1938. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service.
This presentation describes the principles of charcoal burning in Finland at the time when charcoal had found a new market in ore processing.
This is a working paper. It presents the laboratory experiments with soil samples from northern Finland, in which the precipitation of iron (Fe) was tested with limewater (Ca). There was no clear difference between samples with limewater and samples without limewater. However, the lime prevented the infiltration of iron almost totally.
The mineral content of soil effects the forest growth and yield and hence it is of interest for forestry. More research is needed both as field experiments and in the laboratory.
The profitability of fast-growing trees (Eucalyptus camaldulensis Dehnh., Acacia mangium Willd. and Melia azedarach L.) was investigated in the north-eastern and eastern provinces of Thailand. The financial, economic, and tentative environmental-economic profitability was determined separately for three fast-growing plantation tree species and for three categories of plantation managers: the private industry, the state (the Royal Forest Department) and the farmers. Fast-growing tree crops were also compared with teak (Tectona grandis L. f.), a traditional medium or long rotation species, and Para rubber (Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.) which presently is the most common cultivated tree in Thailand.
The optimal rotation for Eucalyptus camaldulensis pulpwood production was eight years. This was the most profitable species in pulpwood production. In sawlog production Acacia mangium and Melia azedarach showed a better financial profitability. Para rubber was more profitable and teak less profitable than the three fast-growing species. The economic profitability was higher than the financial one, and the tentative environmental-economic profitability was slightly higher than the economic profitability.
The profitability of tree growing is sensitive to plantation yields and labour cost changes and especially to wood prices. Management options which aim at pulpwood production are more sensitive to input or output changes than those options which include sawlog production. There is an urgent need to improve the growth and yield data and to study the environmental impacts of tree plantations for all species and plantation types.
The PDF includes a summary in Finnish.
The investigation concerns the nature of the dialectic relationships between small-scale entrepreneurs in peripheral areas and their business environments.
The investigation is weighted towards a theoretical and philosophical examination of the ways in which the behaviours of real-world entrepreneurs relate to their business environments. The theoretical framework first examines the assumption of intended or bounded rationality, which recognizes that human beings are in possession of imperfect information and imperfect ability, so that their perceived world is only an approximation of the real world. Following this, an epistemology is sought which enables the individual entrepreneur to be considered as the creator of his own world, and to compare this private world to the shared context of a wider set of spatial and social relations. Such an epistemology is found in existential phenomenology, which is subjected to a critical review.
As an empirical case study, the investigation examines the small sawmill entrepreneurs of North Karelia, Finland. The empirical investigation examines the aspects of the small-scale entrepreneurs’ business attitudes, perceived business environments, and their ability to use business-related information. The existential man-environment dialectic is revealed by relating these attributes to the entrepreneurs’ social setting and the level of entrepreneurship as revealed by the sawmill typology.
The PDF includes a summary in Finnish.
The influence of various environmental factors on the diameter growth of trees has been studied based on data collected by following daily increment of trees and various environmental factors during the growing season in 1964–1967. The field work was carried out in two experimental stands, a Scots pine (Pinus sylvestris L.) stand and a mixed stands growing birch (Betula sp.), Norway spruce (Picea abies (L.) H. Karst.) and Scots pine, in Southern Finland.
The results show that the temperature sums preceding the beginning of diameter growth were of the same magnitude in the years studied, which indicates dependence in the relationship. Formation of new xylem cells took place in the pine stem ca. every third day when the diameter growth was most active. No summer growth inhibition was detected in diameter growth.
None of the cumulative temperature sums tried determined the time of cessation of diameter growth. In several cases, positive correlation was found between the length of the growing season and the width of the annual ring formed. When studying the relationships between the diameter increment and the environmental factors, it was found that diameter increment was totally masked in the records by the hydrostatic changes in the stem. Relationships between the diameter increment and the environmental factors of the second day preceding growth were found to be poor. In studying the deviations of the recorded daily increments from the regression surface, no clear general trend was seen for pine and spruce, but clear diminishing trend toward the end og the growing season could be seen for birch in 1967.
We evaluated the consistency of video, ordinary photo, and panoramic photo surveys in measuring the attractiveness (recreational use, scenic values etc.) of forest stands managed with varying intensities. We also evaluated possible effects on the results caused by the personal background of citizen respondents and how the respondents experienced the evaluation events. Our experimental sites were in mature Scots pine (Pinus sylvestris L.) forests in eastern Finland and included two replicate sites which were unharvested (control, basal area 26 m2 ha–1), a selective cutting site (basal area 18 m2 ha–1), small openings sites (gap cut) with 5 and 20% retained trees, respectively, and one site which was clear cut with 3% retained trees. In our study, 71 volunteer forestry students evaluated the attractiveness of these sites from an ordinary photo, a panoramic photo, and a video, with a 0–10 scale. Based on this study, the unharvested forest was the most attractive and clear cutting was the least attractive, regardless of the evaluation method. This result was in line with a previous study using on-site evaluations of the same sites. The differences of respondents considering in how easy they felt to assess the attractiveness of the environment as a whole and in using different visualisation methods affected the result, unlike background variables of the respondents. The results of forest attractiveness were consistent between panoramic and ordinary photos, and the attractiveness scoring was slightly higher for them than for the video. We conclude that all the compared visualisation methods seem to be suitable for assessment of the attractiveness of forest views.
Dalbergia latifolia Roxb., commonly known as rosewood, is one of the highly valuable tropical timber species of Nepal. The tree species was widely distributed in the past, however, over-exploitation of natural habitat, deforestation, forest conversion for agriculture, illegal logging and the invasion of alien species resulted in the classification of this species as vulnerable by the IUCN (International Union for Conservation of Nature) category. So, the prediction of habitat suitability and potential distribution of the species is required to develop restoration mechanisms and conservation interventions. In this study, we modelled the suitable habitat of D. latifolia over the entire possible range of Nepal using a Maxent model. We compiled 23 environmental variables (19 bioclimatic, 3 topographic and a vegetative layer), however, only 12 least correlated variables along with 43 spatially representative presence locations were retained for model prediction. We used a receiver operating characteristic (ROC) curve to assess the model’s performance and a Jackknife procedure to evaluate the relative importance of predictor variables. The model was statistically significant with an area under the curve (AUC) value of 0.969. The internal Jackknife test indicated that elevation was the most important variable for the model prediction with 71.3% contribution followed by mean temperature of driest quarter (9.8%). The most (>0.6) suitable habitat for the D. latifolia was 235 484 hectares with large sections of area in two provinces whereas, the western most provinces were not suitable for D. latifolia as per Maxent model. The information presented here can provide a framework for nature conservation planning, monitoring and habitat management of this rare and endangered species.
The aim of this study was to determine the effect of leaching of heavy metals (Cr, As, Cd, Cu, Ni, Pb, Zn, Co, Mo) and earth-alkaline metal, barium (Ba), on the percolation and ditch water quality from the forest roads that contained ash in the road structures. Water quality was studied in the immediate vicinity below the ash layers as well as deeper in the road structure. Water quality was also determined in the drainage water in ditches that crossed the forest roads. A mixture of wood and peat based fly ash was used in the road structures. The treatments were: 1) no ash, 2) a 15 cm layer of ash/gravel mixture, 3) a 20 cm layer of ash/gravel mixture, 4) a 25 cm layer of ash, and 5) a 50 cm layer of ash. Large variation in the concentrations of Cr, As, Cu, Ni, Pb, Mo and Ba in the percolation water, even within the same treatment, caused difficulties to generalize the results. The concentrations of Cr, As, Ni, Pb, Mo and Ba in water samples were high in some treatment plot lysimeters containing ash compared to the control (no ash). On the other hand, many lysimeters had low and similar concentrations in water samples in the treatment plots containing ash compared to concentrations in the control plots. The ash in the roads did not affect the concentrations in the ditches. The leaching is uneven and seems to take place only from some parts of the ash layer. Risk for leaching is minimal if such parts are not widely spread.
In Scots pine (Pinus sylvestris L.), it has been shown that the parental conditions have a role in the phenological variation among first-year seedlings. For this reason, it is argued that they should be comprehensively controlled before estimating the parental genotype effects. This controlled-cross study examined the effects of a set of fathers of Scots pines on the timing of budset and autumn frost hardening of first-year seedlings. The paternal genotypes had either a northern or southern provenance, but had spent a period of over 25 years as grafts in a shared climatic environment in two closely located southern orchards. Pollen applied in the crosses was collected from these orchards in one year and all the maternal genotypes were pollinated in only one seed orchard. The results of freeze tests and budset observations of the consequent progeny were analysed and additionally compared with results obtained using seedlings from seed lots of natural forests in order to estimate the ability of northern paternal genotypes to maintain a northern effect under southern conditions. This environmentally controlled study demonstrated a significant effect of the paternal genotype on the budset and autumn frost hardening of first-year seedling of Scots pine. With the applied study design, no significant indication of an environmental influence on the effect of the paternal genotype was obtained. The accuracy of the observations is discussed. It is concluded that the results suggest a minor role of mutability in the effects of Scots pine paternal genotypes.
Environmental planning for of the maintenance of different conservation objectives should take into account multiple contrasting criteria based on alternative uses of the landscape. We develop new concepts and approaches to describe and measure conflicts among conservation objectives and for resolving them via multiobjective optimization. To measure conflicts we introduce a compatibility index that quantifies how much targeting a certain conservation objective affects the capacity of the landscape for providing another objective. To resolve such conflicts we find compromise solutions defined in terms of minimax regret, i.e. minimizing the maximum percentage of deterioration among conservation objectives. Finally, we apply our approach for a case study of management for biodiversity conservation and development in a forest landscape. We study conflicts between six different forest species, and we identify management solutions for simultaneously maintaining multiple species’ habitat while obtaining timber harvest revenues. We employ the method for resolving conflicts at a large landscape level across a long 50-years forest planning horizon. Our multiobjective approach can be an instrument for guiding hard choices in the conservation-development nexus with a perspective of developing decision support tools for land use planning. In our case study multiple use management and careful landscape level planning using our approach can reduce conflicts among biodiversity objectives and offer room for synergies in forest ecosystems.
We designed a streamlined timber growth and quality model that aims at the effect of stand management on the efficiency of wood resource use. Applying the R based module toolbox to experimental plots of Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) we analysed essential model features for reflecting the influence of planting density on board strength. The current version realistically predicted a significant increase of centre board bending strength at tree age 40 with initial stand density. Model performance gained clear advantage from a) parameterisation of height to diameter allometry as dependent on planting density b) consideration of cambial age and cross‑sectional knot area in board strength computation. Crown shape was less decisive. The model produced a significant effect of planting density even after a whole rotation period of 70 years as well as a realistic spectrum of board bending strength.
The boreal timber- and tree-line forests grow in harsh environmental conditions in their outermost distribution limit. Here even small environmental changes may cause dramatic changes in the distribution of tree species. We examined changes of the forest lines of Norway spruce (Picea abies (L.) H. Karst.) and Scots pine (Pinus sylvestris L.) in Finnish Lapland five times during 1983–2009. We monitored the number of stems and the volume of the growing stock in thirteen different locations in forest-line areas. The linear temporal trends and the variations of these response variables were used as indicators of a possible change during the study period. Spruce showed a significant increase both in the volume of the growing stock (up to 40% increase) and in the total stem number (up to 100% increase). A significant increase in the volume of the growing stock was observed in the pine data as well (up to 70% increase), whereas the stem number stagnated or even decreased. The results suggest that spruce needs favourable conditions to have an abundant regeneration, but after the establishment the seedlings seem to be more resistant against biotic and abiotic disturbances than pine seedlings. The increasing stand volume might result in a climate-related northward and upward extension of forests in the future. However, our results show that responses in the boreal forest line are species and location specific and a more favourable climate does not necessarily lead to an advance of the coniferous forest line.