Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Matti Mõttus

Category : Research article

article id 22028, category Research article
Eelis Halme, Matti Mõttus. (2023). Improved parametrisation of a physically-based forest reflectance model for retrieval of boreal forest structural properties. Silva Fennica vol. 57 no. 2 article id 22028. https://doi.org/10.14214/sf.22028
Keywords: forest structure; Sentinel-2; reflectance; hyperspectral; tree distribution
Highlights: Spatial distribution of trees is a key driver for forest reflectance; Knowledge of the ratio of branch to leaf area improves forest reflectance simulation substantially; Different optical properties of the two leaf sides have a notable effect on forest reflectance.
Abstract | Full text in HTML | Full text in PDF | Author Info
Physically-based reflectance models offer a robust and transferable method to assess biophysical characteristics of vegetation in remote sensing. Forests exhibit explicit structure at many scales, from shoots and branches to landscape patches, and hence present a specific challenge to vegetation reflectance modellers. To relate forest reflectance with its structure, the complexity must be parametrised leading to an increase in the number of reflectance model inputs. The parametrisations link reflectance simulations to measurable forest variables, but at the same time rely on abstractions (e.g. a geometric surface forming a tree crown) and physically-based simplifications that are difficult to quantify robustly. As high-quality data on basic forest structure (e.g. tree height and stand density) and optical properties (e.g. leaf and forest floor reflectance) are becoming increasingly available, we used the well-validated forest reflectance and transmittance model FRT to investigate the effect of the values of the “uncertain” input parameters on the accuracy of modelled forest reflectance. With the state-of-the-art structural and spectral forest information, and Sentinel-2 Multispectral Instrument imagery, we identified that the input parameters influencing the most the modelled reflectance, given that the basic forestry variables are set to their true values and leaf mass is determined from reliable allometric models, are the regularity of the tree distribution and the amount of woody elements. When these parameters were set to their new adjusted values, the model performance improved considerably, reaching in the near infrared spectral region (740–950 nm) nearly zero bias, a relative RMSE of 13% and a correlation coefficient of 0.81. In the visible part of the spectrum, the model performance was not as consistent indicating room for improvement.
article id 10270, category Research article
Aarne Hovi, Matti Mõttus, Jussi Juola, Farshid Manoocheri, Erkki Ikonen, Miina Rautiainen. (2020). Evaluating the performance of a double integrating sphere in measurement of reflectance, transmittance, and albedo of coniferous needles. Silva Fennica vol. 54 no. 2 article id 10270. https://doi.org/10.14214/sf.10270
Keywords: vegetation; albedo; reflectance; transmittance; needle carrier; spectra
Highlights: Adaptation of a compact double integrating sphere for spectral measurements of coniferous needles; Double integrating sphere is fast to operate and suitable for monitoring purposes and collection of large spectral databases; Measured spectra showed negative bias, which could potentially be reduced by building an optimized measurement setup.
Abstract | Full text in HTML | Full text in PDF | Author Info

Leaf reflectance and transmittance spectra are essential information in many applications such as developing remote sensing methods, computing shortwave energy balance (albedo) of forest canopies, and monitoring health or stress of trees. Measurement of coniferous needle spectra has usually been carried out with single integrating spheres, which has involved a lot of tedious manual work. A small double integrating sphere would make the measurements considerably faster, because of its ease of operation and small sample sizes required. Here we applied a compact double integrating sphere setup, used previously for measurement of broad leaves, for measurement of coniferous needles. Test measurements with the double integrating sphere showed relative underestimation of needle albedo by 5–39% compared to a well-established single integrating sphere setup. A small part of the bias can be explained by the bias of the single sphere. Yet the observed bias is quite significant if absolute accuracy of measurements is required. For relative measurements, e.g. for monitoring development of needle spectra over time, the double sphere system provides notable improvement. Furthermore, it might be possible to reduce the bias by building an optimized measurement setup that minimizes absorption losses in the sample port. Our study indicates that double spheres, after some technical improvement, may provide a new and fast way to collect extensive spectral libraries of tree species.

  • Hovi, Aalto University, School of Engineering, Department of Built Environment, P.O.Box 14100, FI-00760 Aalto, Finland ORCID https://orcid.org/0000-0002-4384-5279 E-mail: aarne.hovi@aalto.fi (email)
  • Mõttus, VTT Technical Research Centre Finland, P.O. Box 1000, FI-02044 VTT, Finland ORCID https://orcid.org/0000-0002-2745-1966 E-mail: matti.mottus@gmail.com
  • Juola, Aalto University, School of Engineering, Department of Built Environment, P.O.Box 14100, FI-00760 Aalto, Finland E-mail: jussi.juola@aalto.fi
  • Manoocheri, Aalto University, School of Electrical Engineering, Metrology Research Institute, Maarintie 8, FI-02150 Espoo, Finland ORCID https://orcid.org/0000-0003-3935-3930 E-mail: farshid.manoocheri@aalto.fi
  • Ikonen, VTT Technical Research Centre Finland, P.O. Box 1000, FI-02044 VTT, Finland; Aalto University, School of Electrical Engineering, Metrology Research Institute, Maarintie 8, FI-02150 Espoo, Finland ORCID https://orcid.org/0000-0001-6444-5330 E-mail: erkki.ikonen@aalto.fi
  • Rautiainen, Aalto University, School of Engineering, Department of Built Environment, P.O.Box 14100, FI-00760 Aalto, Finland; Aalto University, School of Electrical Engineering, Department of Electronics and Nanoengineering, P.O. Box 15500, FI-00760 Aalto, Finland ORCID https://orcid.org/0000-0002-6568-3258 E-mail: miina.a.rautiainen@aalto.fi
article id 261, category Research article
Miina Rautiainen, Matti Mõttus, Pauline Stenberg, Sanna Ervasti. (2008). Crown envelope shape measurements and models. Silva Fennica vol. 42 no. 1 article id 261. https://doi.org/10.14214/sf.261
Keywords: Norway spruce; Scots pine; crown profile; reflectance model; remote sensing
Abstract | View details | Full text in PDF | Author Info
This paper addresses tree crown envelope shape modeling from the perspective of optical passive remote sensing. The aims are 1) to review the specific requirements of crown shape models and ground measurement techniques in optical remote sensing, and 2) to present preliminary results from empirical, parametric crown shape and volume modeling of Scots pine and Norway spruce applicable in Finland. Results indicated that the basic dimensions (maximum radius, its height and crown length) of tree crowns were better predicted for pines, but the profile shape of the upper part of the crowns varied more than in spruce. Pine crowns were also slightly less concave than spruce crowns. No regularities were observed concerning the lower part of the crowns. The asymmetry of crowns increased as a function of tree age for both species, spruce crowns being more asymmetric than pine crowns. A comparison of measured crown volume with several simple geometrical crown shape envelopes showed that using a cone as a crown shape model for Scots pine and Norway spruce underestimates crown volume most severely. Other crown envelope shape models (e.g. ellipsoids) rendered crown volumes closer to the measured volume and did not differ considerably from each other.
  • Rautiainen, Tartu Observatory, 61602 Tõravere, Estonia, and Department of Forest Resource Management, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: miina.rautiainen@helsinki.fi (email)
  • Mõttus, Tartu Observatory, 61602 Tõravere, Estonia E-mail: mm@nn.ee
  • Stenberg, Department of Forest Resource Management, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: ps@nn.fi
  • Ervasti, City of Vantaa, Land Use and Environment / Green Area Unit, Kielotie 13, FI-01300 Vantaa, Finland E-mail: se@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles