Current issue: 58(1)

Under compilation: 58(2)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'black spruce'

Category : Research article

article id 918, category Research article
Nelson Thiffault, François Hébert, Robert Jobidon. (2012). Planted Picea mariana growth and nutrition as influenced by silviculture x nursery interactions on an ericaceous-dominated site. Silva Fennica vol. 46 no. 5 article id 918. https://doi.org/10.14214/sf.918
Keywords: fertilization; black spruce; scarification; Kalmia angustifolia; Rhododendron groenlandicum; stock type
Abstract | View details | Full text in PDF | Author Info
We aimed at evaluating the interacting effects of silvicultural and nursery practices on planted black spruce (Picea mariana (Mill.) BSP) dimensions, growth, survival and nutrition, 8 years following planting on a carefully logged boreal stand heavily invaded by Kalmia angustifolia L. and Rhododendron groenlandicum (Oeder) Kron & Judd. We also evaluated functional traits related to light and nutrient acquisition and key environmental resource availability to interpret treatment impacts on spruce seedling leaf traits and growth. An experimental black spruce plantation, consisting in a randomized block split-split-split plot design with 13 replicates was established in northeastern Quebec (Canada). Scarification (single-pass, double-pass), fertilization at the time of planting (control; macronutrients only; macro + micronutrients), stock type (container-grown; bare-root), and initial foliar N concentration (4 increasing levels) treatments were applied, and measurements were performed 5 and 8 years following planting. Double-pass scarification significantly increased soil temperature and reduced the competition cover, compared to the single-pass treatment. As a result, double-pass scarification promoted seedling growth over the single-pass treatment, and influenced the expression of other treatment effects. However, the relative gains associated with the second scarification pass have to be balanced against the supplemental investment involved by the treatment before being recommended. Our results point to variable effects of fertilization at planting to stimulate seedling initial growth. In this ecosystem, it appears that the silvicultural gains of this treatment depend on the variable of interest. Bare-root seedlings grew faster than containerized seedlings in the most intense site preparation treatment, but the differences have limited silvicultural impacts.
  • Thiffault, Ministère des Ressources naturelles du Québec, Direction de la recherche forestière, 2700 rue Einstein, Québec, QC, Canada G1P 3W8 E-mail: nelson.thiffault@mrnf.gouv.qc.ca (email)
  • Hébert, Ministère des Ressources naturelles du Québec, Direction de la recherche forestière, 2700 rue Einstein, Québec, QC, Canada G1P 3W8 E-mail: ffrancois.hebert@mrnf.gouv.qc.ca
  • Jobidon, Ministère des Ressources naturelles du Québec, Direction de la recherche forestière, 2700 rue Einstein, Québec, QC, Canada G1P 3W8 E-mail: robert.jobidon@mrnf.gouv.qc.ca
article id 77, category Research article
Annie Claude Bélisle, Sylvie Gauthier, Dominic Cyr, Yves Bergeron, Hubert Morin. (2011). Fire regime and old-growth boreal forests in central Quebec, Canada: an ecosystem management perspective. Silva Fennica vol. 45 no. 5 article id 77. https://doi.org/10.14214/sf.77
Keywords: black spruce-feather moss; fire history; ecosystem management; dendrochronology
Abstract | View details | Full text in PDF | Author Info
Boreal forest management in Eastern Canada has caused depletion and fragmentation of old-growth ecosystems, with growing impacts on the associated biodiversity. To mitigate impacts of management while maintaining timber supplies, ecosystem management aims to narrow the gap between natural and managed landscapes. Our study describes the fire history and associated natural old-growth forest proportions and distribution of a 5000 km2 area located in the black spruce-feather moss forest of central Quebec. We reconstructed a stand-origin map using archival data, aerial photos and dendrochronology. According to survival analysis (Cox hazard model), the mean fire cycle length was 247 years for the 1734–2009 period. Age-class distribution modelling showed that old-growth forests were present on an average of 55% of the landscape over the last 275 years. The mean fire size was 10 113 ha, while most of the burned area was attributable to fires larger than 10 000 ha, leading to old-growth agglomerations of hundreds of square kilometres. In regards to our findings, we propose ecosystem management targets and strategies to preserve forest diversity and resilience.
  • Bélisle, Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, Canada E-mail: annieclaude_b@hotmail.com (email)
  • Gauthier, Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sainte-Foy, Québec, Canada E-mail: sg@nn.ca
  • Cyr, Institut Québécois d’Aménagement de la Fort Feuillue, Université du Québec en Outaouais, Ripon, Québec, Canada E-mail: dc@nn.ca
  • Bergeron, Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, Canada & NSERC-UQAT-UQAM Industrial Chair in Sustainable Forest Management, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec, Canada E-mail: yb@nn.ca
  • Morin, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada E-mail: hm@nn.can
article id 128, category Research article
Shelley L. Hunt, Andrew M. Gordon, Dave M. Morris. (2010). Carbon stocks in managed conifer forests in northern Ontario, Canada. Silva Fennica vol. 44 no. 4 article id 128. https://doi.org/10.14214/sf.128
Keywords: forest management; boreal forest; carbon sequestration; carbon stocks; jack pine; black spruce; plantations
Abstract | View details | Full text in PDF | Author Info
Carbon pools and net primary productivity (aboveground) were measured in managed stands of jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.), ranging in age from 10 to 53 years, in the Lake Nipigon area of northern Ontario. Organic carbon in the forest floor and surface mineral soil (top 15 cm) ranged from 13 to 46 Mg C ha-1 and 10 to 29 Mg C ha-1, respectively. Carbon in aboveground tree biomass ranged from 11 to 74 Mg C ha-1 in crop trees, and 0 to 11 Mg C ha-1 in non-crop trees. Coarse woody debris (downed woody debris and snags) contained between 1 and 17 Mg C ha-1. Understory vegetation rarely represented more than 1% of total ecosystem carbon accumulation, but was responsible for a larger proportion of aboveground net primary productivity (ANPP). Rates of ANPP (expressed as carbon) ranged from 0.8 to 3.5 Mg C ha-1 y-1. Carbon stocks in managed stands were compared with published values from similarly aged fire-origin stands in the North American boreal region. Carbon stocks in our study stands generally exceeded those in unmanaged fire-origin stands of the same age, due to larger tree and forest floor carbon pools.
  • Hunt, University of Guelph, School of Environmental Sciences, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1 E-mail: shunt@uoguelph.ca (email)
  • Gordon, University of Guelph, School of Environmental Sciences, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1 E-mail: amg@nn.ca
  • Morris, Ontario Ministry of Natural Resources, Centre for Northern Forest Ecosystem Research, 955 Oliver Rd., Thunder Bay, Ontario, Canada P7B 5E1 E-mail: dmm@nn.ca

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles