Current issue: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'forest operations'

Category : Research article

article id 23062, category Research article
Tobias Semberg, Anders Nilsson, Rolf Björheden, Linnea Hansson. (2024). Real-time target point identification and automated log grasping by a forwarder, using a single stereo camera for both object detection and boom-tip control. Silva Fennica vol. 58 no. 1 article id 23062. https://doi.org/10.14214/sf.23062
Keywords: vector analysis; forwarder; forest operations; loading; boom automation; object detection; stereo camera
Highlights: Simple target-point detection in real time using only a stereo camera; Sturdiness ensured through the simple feedback system based on the same camera; Automated boom-tip control and log grasping successfully tested on full-sized forwarder; A step toward semi-automation (operator support) or autonomous forwarding.
Abstract | Full text in HTML | Full text in PDF | Author Info
The forest industry is constantly striving to increase productivity and cut costs, and many research and innovation projects are currently focusing on semi-automated or autonomous systems. A key element, with several possible solutions, is automated log grasping, where researchers and manufacturers are looking for efficient and sturdy ways to solve the task in real-time forwarding operations. This study presents a simple method for automated log grasping using only a single stereo camera for object detection (log and grapple) and a simple controller moving the boom, with feedback from the camera as boom-tip control. The accuracy, precision, and repeatability of the method was tested on a full-scale forwarder. Boom movements were examined from two different start positions in relation to the target position, with the log placed at three different angles. The overall log-grasping success was also evaluated. The tests were performed in a full-scale, real-time operation, without hand-eye calibration or other sensor data from the machine. The method was precise, with high repeatability, but the grasping point showed a minor systematic offset, depending on log angle. However, the deviation in accuracy was too small to affect the success rate. In practice, the most difficult log angles can be avoided by moving the machine slightly. The log grasping method may become part of an autonomous forwarding system or could provide operator support in semi-automated systems.
  • Semberg, Skogforsk (The Forestry Research Institute of Sweden), Uppsala Science Park, 751 83 Uppsala, Sweden E-mail: tobias.semberg@skogforsk.se
  • Nilsson, Skogforsk (The Forestry Research Institute of Sweden), Uppsala Science Park, 751 83 Uppsala, Sweden E-mail: anders.nilsson@skogforsk.se
  • Björheden, Skogforsk (The Forestry Research Institute of Sweden), Uppsala Science Park, 751 83 Uppsala, Sweden ORCID https://orcid.org/0000-0002-4158-102X E-mail: rolf.bjorheden@skogforsk.se
  • Hansson, Skogforsk (The Forestry Research Institute of Sweden), Uppsala Science Park, 751 83 Uppsala, Sweden ORCID https://orcid.org/0000-0002-9788-1734 E-mail: linnea.hansson@skogforsk.se (email)
article id 10660, category Research article
Åsa Gustafsson, Jimmy Johansson. (2022). Identifying present drivers of product development and describing roles of identified actors primarily affecting the development of harvesters: a multiple-case study. Silva Fennica vol. 56 no. 3 article id 10660. https://doi.org/10.14214/sf.10660
Keywords: forest operations; logging contractor; industry driver; interview; softwood lumber supply chain
Highlights: Legislators, logging contractors, and expert and research organizations are present drivers of product development of harvesters; They appear to prioritize meeting legal regulations and lowering costs for logging contractors as they outline requirements for manufacturing harvesters.
Abstract | Full text in HTML | Full text in PDF | Author Info

Forest operations involve several different actors. Each actor imposes their own requirements on the harvester in relation to their differing roles in the industry, whether they are concerned with the harvester itself, information, environmental concerns, etc. The manufacturers of harvesters need to meet the requirements imposed by multiple actors, among them logging contractors, whose survival depends on their harvesters. This paper aims to identify the present drivers of product development and describe the roles of the actors who have been identified as those currently affecting the development of harvesters. A multiple-case study of harvester manufacturers was conducted. In total, 4 cases were studied. Each case was comprised of five interviewees: two from each harvesting manufacturer, two logging contractors, and one dealer. Following 20 interviews and 3 validation interviews (with experts from both the industry and academia), the paper concludes that the present drivers of product development of harvesters are legislators, logging contractors, and expert and research organizations. Harvester manufacturers appear to develop harvesters aligned with requirements coming from both logging contractors and legislators. Logging contractors are the primary customers, and they prioritize requirements that reduce cost and improve work environments. Legislators, and expert and research organizations are supporting development in relation to current regulations.

  • Gustafsson, Department of Accounting and Logistics, Linnaeus University, Universitetsplatsen 1, 352 52 Växjö, Sweden E-mail: asa.gustafsson@lnu.se (email)
  • Johansson, Department of Forestry and Wood Technology, Linnaeus University, 391 82 Kalmar, Sweden E-mail: jimmy.johansson@lnu.se
article id 604, category Research article
Dan Glöde, Ulf Sikström. (2001). Two felling methods in final cutting of shelterwood, single-grip harvester productivity and damage to the regeneration. Silva Fennica vol. 35 no. 1 article id 604. https://doi.org/10.14214/sf.604
Keywords: silviculture; time study; cost; forest operations; felling technique; logging-damage
Abstract | View details | Full text in PDF | Author Info
In order to find an efficient and careful way of final-cutting shelterwoods, two felling methods, in a single-grip harvester system, were compared with respect to productivity and damage caused to the regeneration. The shelterwood (140–165 m3/ha) consisted of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) and the natural regeneration (9530–11 780 seedlings/ha) mostly of Norway spruce. Treatments were: (i) conventional felling on both sides of the harvester striproad, preferably in blanks of the regeneration; (ii) felling of the trees top-end first into the striproad using a method named “tossing the caber”. Both treatments included forwarding after felling. Conventional felling had a non-significantly higher productivity (27.4 m3/E15–h) and lower cost (25.9 SEK/m3) than tossing the caber (26.1 m3/E15–h and 27.2 SEK/m3). However, tossing the caber was significantly more efficient in the felling and processing of pine trees compared with conventional felling. The mean proportions of the disappeared and damaged seedlings were approximately 40% after both treatments. The logging-related damage to the regeneration decreased with increased distance to the striproad in the tossing the caber treatment but not in conventional felling. The conclusions were that there were no differences between the treatments regarding productivity, cost and total damage to the regeneration in mixed conifer shelterwoods but that tossing the caber could be a more productive method than conventional felling in pine dominated stands. Tossing the caber could also be beneficial at a regeneration height of 2–3 m since at this height the damage to the regeneration seems less than at conventional felling.
  • Glöde, SkogForsk, Uppsala Science Park, S-751 83 Uppsala, Sweden E-mail: dan.glode@skogforsk.se (email)
  • Sikström, SkogForsk, Uppsala Science Park, S-751 83 Uppsala, Sweden E-mail: us@nn.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles