Current issue: 58(3)

Under compilation: 58(4)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'segmentation'

Category : Article

article id 7675, category Article
Erkki Tomppo. (1992). Satellite image aided forest site fertility estimation for forest income taxation. Acta Forestalia Fennica no. 229 article id 7675. https://doi.org/10.14214/aff.7675
Keywords: site quality; discriminant analysis; forest taxation; satellite images; segmentation; logistic regression analysis; Markov random field
Abstract | View details | Full text in PDF | Author Info

Two operative forest site class estimation methods utilizing satellite images have been developed for forest income taxation purposes. For this, two pixelwise classification methods and two post-processing methods for estimating forest site fertility are compared using different input data. The pixelwise methods are discriminant analysis, based on generalized squared distances, and logistic regression analysis. The results of pixelwise classifications are improved either with mode filtering within forest stands or assuming a Markov random field type dependence between pixels. The stand delineation is obtained by using ordinary segmentation techniques. Optionally, known stand boundaries given by the interpreter can be applied. The spectral values of images are corrected using a digital elevation model of the terrain. Some textural features are preliminary tested in classification. All methods are justified by using independent test data.

A test of the practical methods was carried out and a cost-benefit analysis computed. The estimated cost saving in site quality classification varies from 14% to 35% depending on the distribution of the site classes of the area. This means a saving of about 2.0–4.5 million FMK per year in site fertility classification for income taxation purposes. The cost savings would rise even to 60% if that version of the method were chosen where field checking is totally omitted. The classification accuracy at the forest holding level would still be similar to that of traditional method.

The PDF includes a summary in Finnish.

  • Tomppo, E-mail: et@mm.unknown (email)

Category : Research article

article id 23014, category Research article
Hao Xiong, Yong Pang, Wen Jia, Yu Bai. (2024). Forest stand delineation using airborne LiDAR and hyperspectral data. Silva Fennica vol. 58 no. 2 article id 23014. https://doi.org/10.14214/sf.23014
Keywords: canopy height model; automatic delineation; merge rule; over-segmentation
Highlights: Delineate forest stands by the fusion of airborne LiDAR and hyperspectral data automatically; The forest height, canopy closure, and species information were taken into account during the delineation process, aligning with forest management in reality; The delineation accuracy was verified through comparison with three reference data sources commonly used in forest management.
Abstract | Full text in HTML | Full text in PDF | Author Info

Forest stands, crucial for inventory, planning, and management, traditionally rely on time-consuming visual analysis by forest managers. To enhance efficiency, there is a growing need for automated methods that take into account essential forest attributes. In response, we propose a novel approach utilizing airborne Light Detection and Ranging (LiDAR) and hyperspectral data for automated forest stand delineation. Our approach initiates with over-segmentation of the Canopy Height Model (CHM), followed by attribute calculation for each segment using both CHM and hyperspectral data. Two rules are applied to merge homogeneous segments and eliminate others based on calculated attributes. The effectiveness of our method was validated using three types of reference forest stands with two indices: the explained variance (R2) and Intersection over Union (IoU). Results from our study demonstrated notable accuracy, with a R2 of 97.35% and 97.86% for mean tree height and mean diameter at breast height (DBH), respectively. The R2 for mean canopy height is 81.80%, outperforming manual delineation by 7.31% and multi-scale segmentation results by 2.13%. Furthermore, our approach achieved high IoU values, which indicates a strong spatial agreement with manually delineated forest stands and leading to fewer manual adjustments when applied directly to forest management. In conclusion, our forest stand delineation method enhances both internal consistency and spatial accuracy. This method contributes to improving practical performance and forest management efficiency.

  • Xiong, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China; School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China ORCID https://orcid.org/0000-0003-4432-2485 E-mail: xiongh29@mail2.sysu.edu.cn
  • Pang, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China ORCID https://orcid.org/0000-0002-9760-6580 E-mail: pangy@ifrit.ac.cn (email)
  • Jia, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China E-mail: jiawen@ifrit.ac.cn
  • Bai, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China; Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing 100091, China E-mail: baiyu9224@163.com
article id 1414, category Research article
Rami Saad, Jörgen Wallerman, Johan Holmgren, Tomas Lämås. (2016). Local pivotal method sampling design combined with micro stands utilizing airborne laser scanning data in a long term forest management planning setting. Silva Fennica vol. 50 no. 2 article id 1414. https://doi.org/10.14214/sf.1414
Keywords: LIDAR; forest management planning; local pivotal method (LPM); segmentation; most similar neighbor (MSN) imputation; suboptimal loss; Heureka; decision support system
Highlights: Most similar neighbor imputation was used to estimate forest variables using airborne laser scanning data as auxiliary data; For selecting field reference plots the local pivotal method (LPM) was compared to systematic sampling design; The LPM sampling design combined with a micro stand approach showed potential for improvement and has the potential to be a competitive method when considering cost efficiency.
Abstract | Full text in HTML | Full text in PDF | Author Info

A new sampling design, the local pivotal method (LPM), was combined with the micro stand approach and compared with the traditional systematic sampling design for estimation of forest stand variables. The LPM uses the distance between units in an auxiliary space – in this case airborne laser scanning (ALS) data – to obtain a well-spread sample. Two sets of reference plots were acquired by the two sampling designs and used for imputing data to evaluation plots. The first set of reference plots, acquired by LPM, made up four imputation alternatives (varying number of reference plots) and the second set of reference plots, acquired by systematic sampling design, made up two alternatives (varying plot radius). The forest variables in these alternatives were estimated using the nonparametric method of most similar neighbor imputation, with the ALS data used as auxiliary data. The relative root mean square error (RelRMSE), stem diameter distribution error index and suboptimal loss were calculated for each alternative, but the results showed that neither sampling design, i.e. LPM vs. systematic, offered clear advantages over the other. It is likely that the obtained results were a consequence of the small evaluation dataset used in the study (n = 30). Nevertheless, the LPM sampling design combined with the micro stand approach showed potential for improvement and might be a competitive method when considering the cost efficiency.

  • Saad, Swedish University of Agricultural Sciences (SLU), Department of Forest Resource Management, Skogsmarksgränd, SE-901 83 Umeå, Sweden E-mail: rami.saad@slu.se (email)
  • Wallerman, Swedish University of Agricultural Sciences (SLU), Department of Forest Resource Management, Skogsmarksgränd, SE-901 83 Umeå, Sweden E-mail: jorgen.wallerman@slu.se
  • Holmgren, Swedish University of Agricultural Sciences (SLU), Department of Forest Resource Management, Skogsmarksgränd, SE-901 83 Umeå, Sweden E-mail: johan.holmgren@slu.se
  • Lämås, Swedish University of Agricultural Sciences (SLU), Department of Forest Resource Management, Skogsmarksgränd, SE-901 83 Umeå, Sweden E-mail: tomas.lamas@slu.se
article id 155, category Research article
Minna Räty, Annika Kangas. (2010). Segmentation of model localization sub-areas by Getis statistics. Silva Fennica vol. 44 no. 2 article id 155. https://doi.org/10.14214/sf.155
Keywords: eCognition; form height; Getis statistics; image segmentation; local indicators of spatial association
Abstract | View details | Full text in PDF | Author Info
Models for large areas (global models) are often biased in smaller sub-areas, even when the model is unbiased for the whole area. Localization of the global model removes the local bias, but the problem is to find homogenous sub-areas in which to localize the function. In this study, we used the eCognition Professional 4.0 (later versions called Definies Pro) segmentation process to segment the study area into homogeneous sub-areas with respect to residuals of the global model of the form height and/or local Getis statistics calculated for the residuals, i.e., Gi*-indices. The segmentation resulted in four different rasters: 1) residuals of the global model, 2) the local Gi*-index, and 3) residuals and the local Gi*-index weighted by the inverse of the variance, and 4) without weighting. The global model was then localized (re-fitted) for these sub-areas. The number of resulting sub-areas varied from 4 to 366. On average, the root mean squared errors (RMSEs) were 3.6% lower after localization than the global model RMSEs in sub-areas before localization. However, the localization actually increased the RMSE in some sub-areas, indicating the sub-area were not appropriate for local fitting. For 56% of the sub-areas, coordinates and distance from coastline were not statistically significant variables, in other words these areas were spatially homogenous. To compare the segmentations, we calculated an aggregate standard error of the RMSEs of the single sub-areas in the segmentation. The segmentations in which the local index was present had slightly lower standard errors than segmentations based on residuals.
  • Räty, University of Helsinki, Department of Forest Sciences, P.O. Box 27 (Latokartanonkaari 7), FI-00014 University of Helsinki, Finland E-mail: minna.s.raty@helsinki.fi (email)
  • Kangas, University of Helsinki, Department of Forest Sciences, P.O. Box 27 (Latokartanonkaari 7), FI-00014 University of Helsinki, Finland E-mail: ak@nn.fi

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles