Current issue: 58(2)

Under compilation: 58(3)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Karin Hjelm

Category : Research article

article id 23004, category Research article
Per Nordin, Erika Olofsson, Karin Hjelm. (2023). Within-site adaptation: growth and mortality of Norway spruce, Scots pine and silver birch seedlings in different planting positions across a soil moisture gradient. Silva Fennica vol. 57 no. 3 article id 23004. https://doi.org/10.14214/sf.23004
Keywords: regeneration; microsite; decision making; mounding; planting; depth-to-water
Highlights: A soil moisture map could be used to support the choice of planting position for different soil moisture conditions; Mounds reduced mortality rates for conifers when conditions were wet, but at drier conditions differences between planting positions were small; Contradictory, silver birch had higher survival in lower planting positions compared with mounds; Height and diameter were higher in mounds for conifers, but only small differences occurred between planting positions for silver birch.
Abstract | Full text in HTML | Full text in PDF | Author Info
Adapting to site conditions is a central part of forest regeneration and can be done through selection of different planting positions. Requirements are tree species specific, and the use of soil moisture maps could be a way to support decision making in forest regeneration planning. At two experimental sites with varying soil moisture conditions in southern Sweden Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and silver birch (Betula pendula Roth) seedlings were planted in four different planting positions following mounding site preparation; Depression, Hinge, Mound and Unscarified. Soil moisture estimates were obtained from a high-resolution depth-to-water raster for each planting spot. The effect of soil moisture, planting position and their interactions on mortality, height and diameter was evaluated for each tree species. In wet conditions mounds proved to be the best option to minimize seedling mortality for conifers, but with decreasing soil moisture, differences between the planting positions decreased. Birch on the other hand had the greatest survival in the hinge. The coniferous species displayed increased height and diameter when planted in mounds independent of the soil moisture conditions, whereas silver birch was less dependent on a specific planting position. Results from this study shows that a soil moisture map can explain mortality, height and diameter and thus can be a useful tool when choosing planting position in different soil moisture conditions.
article id 10036, category Research article
Karin Hjelm, Lars Rytter. (2018). The demand of hybrid aspen (Populus tremula × P. tremuloides) on site conditions for a successful establishment on forest land. Silva Fennica vol. 52 no. 5 article id 10036. https://doi.org/10.14214/sf.10036
Keywords: regeneration; site preparation; clone effects; poplars; soil acidity
Highlights: Low pH (below 3.5) reduced growth, but not survival, in a greenhouse study; Site preparation methods did not affect survival in field, but differences were found for growth; Mounding had generally the best effect on growth; Clonal differences were found that could be useful for improving establishment and growth.
Abstract | Full text in HTML | Full text in PDF | Author Info

Hybrid aspen (Populus tremula L. × P. tremuloides Michx.) is a deciduous tree species suitable for producing large amounts of renewable biomass during short rotations. Its potential under North European conditions could be largely extended if not only agricultural land but also forest land was used for cultivation. Unfortunately, the knowledge of appropriate forest site conditions and effects of site preparation methods on hybrid aspen establishment is limited. In this paper, two studies that explore these questions are presented. In the first study, the sensitivity to acid soils was tested under greenhouse conditions in two type of soils: a) peat soil limed to certain pH levels (3.4–5.7) and b) collected forest soils where pH varied from 3.9 to 5.3. The lowest pH level resulted in reduced growth, elsewhere no significant differences were found. The second study was applied in the field and investigated the effect of four site preparation methods on survival and growth. The methods were: 1) control with no site preparation, 2) patch scarification, 3) mounding and 4) soil inversion. While no differences were found for survival, mounding was generally the method with the highest growth and patch scarification was least successful. The result was probably an effect of good soil aeration and less competition from vegetation after mounding. The field study also revealed clonal differences in growth performance, which stresses the importance of clone selection prior to planting. The results of these studies indicate that hybrid aspen is less sensitive to variation in pH and site preparation methods compared with other poplar species, as have been found in similar studies.

  • Hjelm, Skogforsk, Ekebo 2250, SE-268 90 Svalöv, Sweden E-mail: karin.hjelm@skogforsk.se (email)
  • Rytter, Skogforsk, Ekebo 2250, SE-268 90 Svalöv, Sweden ORCID http://orcid.org/0000-0001-6183-4832 E-mail: lars.rytter@skogforsk.se
article id 7751, category Research article
Göran Nordlander, Euan G. Mason, Karin Hjelm, Henrik Nordenhem, Claes Hellqvist. (2017). Influence of climate and forest management on damage risk by the pine weevil Hylobius abietis in northern Sweden. Silva Fennica vol. 51 no. 5 article id 7751. https://doi.org/10.14214/sf.7751
Keywords: temperature sum; reforestation; soil scarification; clear-cut age; conifer seedling; damage prediction; warmer climate
Highlights: Analysis of survey data from 292 reforestation areas in northern Sweden show that the probability of pine weevil damage can be predicted with a standard error of 0.12; Three variables are important in the optimal model: proportion of seedlings in mineral soil, age of clear-cut, and temperature sum; Temperature sum in the model can be adjusted to reflect future climate scenarios.
Abstract | Full text in HTML | Full text in PDF | Author Info

The pine weevil Hylobius abietis L. is an economically important pest insect that kills high proportions of conifer seedlings in reforestation areas. It is present in conifer forests all over Europe but weevil abundance and risk for damage varies considerably between areas. This study aimed to obtain a useful model for predicting damage risks by analyzing survey data from 292 regular forest plantations in northern Sweden. A model of pine weevil attack was constructed using various site characteristics, including both climatic factors and factors related to forest management activities. The optimal model was rather imprecise but showed that the risk of pine weevil attack can be predicted approximatively with three principal variables: 1) the proportion of seedlings expected to be planted in mineral soil rather than soil covered with duff and debris, 2) age of clear-cut at the time of planting, and 3) calculated temperature sum at the location. The model was constructed using long-run average temperature sums for epoch 2010, and so effects of climate change can be inferred from the model by adjustment to future epochs. Increased damage risks with a warmer climate are strongly indicated by the model. Effects of a warmer climate on the geographical distribution and abundance of the pine weevil are also discussed. The new tool to better estimate the risk of damage should provide a basis for foresters in their choice of countermeasures against pine weevil damage in northern Europe.

  • Nordlander, Swedish University of Agricultural Sciences (SLU), Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden E-mail: Goran.Nordlander@slu.se
  • Mason, University of Canterbury, School of Forestry, Private Bag 4800, Christchurch 8140, New Zealand; Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53 Alnarp, Sweden ORCID http://orcid.org/0000-0001-9024-9106 E-mail: euan.mason@canterbury.ac.nz (email)
  • Hjelm, Skogforsk, The Forest Research Institute of Sweden, Ekebo 2250, SE-268 90 Svalöv, Sweden; Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53 Alnarp, Sweden E-mail: karin.hjelm@skogforsk.se
  • Nordenhem, Swedish University of Agricultural Sciences (SLU), Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden E-mail: h.nordenhem@telia.com
  • Hellqvist, Swedish University of Agricultural Sciences (SLU), Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden E-mail: Claes.Hellqvist@slu.se

Category : Review article

article id 10172, category Review article
Ulf Sikström, Karin Hjelm, Kjersti Holt Hanssen, Timo Saksa, Kristina Wallertz. (2020). Influence of mechanical site preparation on regeneration success of planted conifers in clearcuts in Fennoscandia – a review. Silva Fennica vol. 54 no. 2 article id 10172. https://doi.org/10.14214/sf.10172
Keywords: natural regeneration; regeneration chain; seedling growth; coniferous seedlings; disturbed soil surface; seedling survival
Highlights: Mechanical site preparation (MSP) increases seedling survival rates by 15–20%; Survival rates of 80–90% ca. 10 years after MSP and planting conifers are possible; MSP can increase tree height 10–15 years after planting by 10–25%; The increase in growth rate associated with MSP may be temporary, but the height enhancement probably persists.
Abstract | Full text in HTML | Full text in PDF | Author Info

In the Nordic countries Finland, Norway and Sweden, the most common regeneration method is planting after clearcutting and, often, mechanical site preparation (MSP). The main focus of this study is to review quantitative effects that have been reported for the five main MSP methods in terms of survival and growth of manually planted coniferous seedlings of Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) in clearcuts in these three countries. Meta analyses are used to compare the effects of MSP methods to control areas where there was no MSP and identify any relationships with temperature sum and number of years after planting. In addition, the area of disturbed soil surface and the emergence of naturally regenerated seedlings are evaluated. The MSP methods considered are patch scarification, disc trenching, mounding, soil inversion and ploughing. Studies performed at sites with predominately mineral soils (with an organic topsoil no thicker than 0.30 m), in boreal, nemo-boreal and nemoral vegetation zones in the three Fenno-Scandinavian countries are included in the review. Data from 26 experimental and five survey studies in total were compiled and evaluated. The results show that survival rates of planted conifers at sites where seedlings are not strongly affected by pine weevil (Hylobius abietis L.) are generally 80–90% after MSP, and 15–20 percent units higher than after planting in non-prepared sites. The experimental data indicated that soil inversion and potentially ploughing (few studies) give marginally greater rates than the other methods in this respect. The effects of MSP on survival seem to be independent of the temperature sum. Below 800 degree days, however, the reported survival rates are more variable. MSP generally results in trees 10–25% taller 10–15 years after planting compared to no MSP. The strength of the growth effect appears to be inversely related to the temperature sum. The compiled data may assist in the design, evaluation and comparison of possible regeneration chains, i.e. analyses of the efficiency and cost-effectiveness of multiple combinations of reforestation measures.

  • Sikström, Skogforsk, Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: ulf.sikstrom@skogforsk.se
  • Hjelm, Skogforsk, Ekebo 2250, SE-268 90 Svalöv, Sweden E-mail: karin.hjelm@skogforsk.se (email)
  • Holt Hanssen, Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, NO-1431 Ås, Norway E-mail: kjersti.hanssen@nibio.no
  • Saksa, Natural Resources Institute Finland (Luke), Juntintie 154, FI-77600 Suonenjoki, Finland E-mail: timo.saksa@luke.fi
  • Wallertz, Swedish University of Agricultural Sciences (SLU), Asa Forest Research Station, SE-360 30 Lammhult, Sweden E-mail: kristina.wallertz@slu.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles