Current issue: 56(2)

Under compilation: 56(3)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'substitution'

Category: Research article

article id 10391, category Research article
Victoria A.M. Poljatschenko, Lauri T. Valsta. (2021). Carbon emissions displacement effect of Finnish mechanical wood products by dominant tree species in a set of wood use scenarios. Silva Fennica vol. 55 no. 1 article id 10391. https://doi.org/10.14214/sf.10391
Keywords: avoided emissions; mechanical forest industry; substitution effect; wooden construction
Highlights: Wood product consumption patterns are combined with production-based displacement factors to estimate displacement factors for logs by tree species; The main tree species in Finland have somewhat unequal displacement factors; Historical and projected wood use scenarios show large variation in the levels of avoided emissions between individual years and scenarios.
Abstract | Full text in HTML | Full text in PDF | Author Info

The carbon emissions displacement effect of Finnish logs for mechanical wood products by dominant tree species (Scots pine, Pinus sylvestris L.; Norway spruce, Picea abies (L.) H. Karst.; Birch, Betula spp.) was assessed by combining information from previous studies of current consumption patterns with displacement factors (DF) for structural construction, non-structural construction, and energy usage. We did not conduct additional life cycle analyses compared to the current literature. Our aim was to identify the factors that most extensively influence the displacement effect and to estimate the overall climate effect of Finnish logs in light of current production levels of mechanical forest industry. The analyses were based on information from both statistics and proprietary sources. Contrary to previous studies, we provide DFs by main tree species in Finland, which has been an unidentified area of research to date. Additionally, we apply a more detailed classification of structural and non-structural wood products. This study did not include effects on the forest carbon sink, as they depend case-wise on forest resources and forest management. According to our results, with current production and consumption trends, the average displacement effects for domestic Scots pine, Norway spruce, and birch logs were 1.28, 1.16, and 1.43 Mg C/Mg C, respectively. The corresponding overall annual displacement effect caused by the current production of sawn wood and wood-based panels was 12.3 Tg CO2 for Finland for the BAU scenario and varied between 8.6 and 16.3 Tg CO2 depending on the wood use scenario.

  • Poljatschenko, Simosol Oy, Hämeenkatu 10, FI-11100 Riihimäki, Finland E-mail: victoria.poljatschenko@simosol.fi (email)
  • Valsta, Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, FI-00014 University of Helsinki, Finland E-mail: lauri.valsta@helsinki.fi
article id 51, category Research article
Sanna Hautamäki, Antti Mutanen, Jari Viitanen. (2012). Substitution in the Finnish forest industry’s roundwood procurement. Silva Fennica vol. 46 no. 3 article id 51. https://doi.org/10.14214/sf.51
Keywords: roundwood procurement; imports; substitution; translog cost function
Abstract | View details | Full text in PDF | Author Info
In this study, the interaction and substitution between domestic and imported roundwood in the Finnish forest industry’s wood procurement is analysed by timber assortments. The results from the translog cost function approach and quarterly data of the total wood procurement and its components during the euro regime indicate that, to a certain extent, the Finnish forest industry has had the possibility of substituting imported roundwood volumes between countries in the Baltic Sea region. Contrary to earlier studies, also in the case of Russian birch pulpwood, the most important imported timber assortment, the results suggest that Russian birch pulpwood has rather substituted for than complemented the domestic supply in Finland. The increase in roundwood export duties in Russia has had a statistically significant effect on the trade in birch pulpwood and spruce sawlogs. Moreover, the results confirm the earlier findings of a rigid demand for roundwood in Finnish roundwood markets.
  • Hautamäki, Finnish Forest Research Institute, Joensuu Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: sh@nn.fi
  • Mutanen, Finnish Forest Research Institute, Joensuu Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: antti.mutanen@metla.fi (email)
  • Viitanen, Finnish Forest Research Institute, Joensuu Unit, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: jv@nn.fi
article id 109, category Research article
Ann Kristin Raymer, Terje Gobakken, Birger Solberg. (2011). Optimal forest management with carbon benefits included. Silva Fennica vol. 45 no. 3 article id 109. https://doi.org/10.14214/sf.109
Keywords: forest management; Norway spruce; substitution; CO2; greenhouse gas mitigation; optimisation; wood products
Abstract | View details | Full text in PDF | Author Info
In this paper, we analyse how optimal forest management of even aged Norway spruce changes when economic values are placed on carbon fixation, release, and saved greenhouse gas emissions from using wood instead of more energy intensive materials or fossil fuels. The analyses are done for three different site qualities in Norway, assuming present climate and with a range of CO2 prices and real rates of return. Compared to current recommended management, the optimal number of plants per ha and harvest age are considerably higher when carbon benefits are included, and increase with increasing price on CO2. Furthermore, planting becomes more favourable compared to natural regeneration. At the medium site quality, assuming 2% p.a. real rate of return and 20 euros per ton CO2, optimal planting density increases from 1500 per ha to 3000 per ha. Optimal harvest age increases from 90 to 140 years. Including saved greenhouse gas emissions when wood is used instead of more energy intensive materials or fossil fuels, i.e. substitution effects, does not affect optimal planting density much, but implies harvesting up to 20 years earlier. The value of the forest area increases with increasing price on CO2, and most of the income is from carbon. By using the current recommended management in calculations of carbon benefit, our results indicate that the forest’s potential to provide this environmental good is underestimated. The study includes many uncertain factors. Highest uncertainty is related to the accuracy of the forest growth and mortality functions at high stand ages and densities, and that albedo effects and future climate changes are not considered. As such, the results should be viewed as exploratory and not normative.
  • Raymer, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås, Norway E-mail: akr@nn.no
  • Gobakken, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås, Norway E-mail: terje.gobakken@umb.no (email)
  • Solberg, Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås, Norway E-mail: bs@nn.no
article id 166, category Research article
Kim Pingoud, Johanna Pohjola, Lauri Valsta. (2010). Assessing the integrated climatic impacts of forestry and wood products. Silva Fennica vol. 44 no. 1 article id 166. https://doi.org/10.14214/sf.166
Keywords: carbon stocks; managed forests; silvicultural guidelines; harvested wood products; energy and material substitution; displacement of fossil carbon emissions
Abstract | View details | Full text in PDF | Author Info
Managed forests serve as a store of carbon (C) and a renewable source of energy and materials. By using forest products as substitutes for fossil fuels or non-renewable materials, emissions from fossil C sources can be displaced. The efficiency of emissions displacement depends on the product, its lifecycle and the fossil-fuel based reference system that is substituted. Forest management practices have an impact on C stocks in biomass and on the annual supply of products and their mix. There are trade-offs between sequestering C stocks in forests and the climatic benefits obtained by sustainable forest harvesting and using wood products to displace fossil C emissions. This article presents an integrated, steady-state analysis comparing various equilibrium states of managed forests and wood product pools that represent sustainable long-term forestry and wood-use strategies. Two climatic indicators are used: the combined C stock in forests and wood products and the fossil C emissions displaced annually by harvested wood products. The study indicates that long-term strategies could be available that are better according to both indicators than forestry practices based on the existing silvicultural guidelines in Finland. These strategies would involve increasing the basal area and prolonging rotations to produce more sawlogs. Further, the climate benefits appear to be highest in case the sawlog supply is directed to production of long-lived materials substituting for fossil-emission and energy intensive materials and recycled after their useful life to bioenergy.
  • Pingoud, VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland E-mail: kim.pingoud@vtt.fi (email)
  • Pohjola, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: jp@nn.fi
  • Valsta, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: lv@nn.fi
article id 530, category Research article
Graham D. Farquhar, Thomas N. Buckley, Jeffrey M. Miller. (2002). Optimal stomatal control in relation to leaf area and nitrogen content. Silva Fennica vol. 36 no. 3 article id 530. https://doi.org/10.14214/sf.530
Keywords: stomatal conductance; optimal leaf area; optimality theory; resource substitution
Abstract | View details | Full text in PDF | Author Info
We introduce the simultaneous optimisation of water-use efficiency and nitrogen-use efficiency of canopy photosynthesis. As a vehicle for this idea we consider the optimal leaf area for a plant in which there is no self-shading among leaves. An emergent result is that canopy assimilation over a day is a scaled sum of daily water use and of photosynthetic nitrogen display. The respective scaling factors are the marginal carbon benefits of extra transpiration and extra such nitrogen, respectively. The simple approach successfully predicts that as available water increases, or evaporative demand decreases, the leaf area should increase, with a concomitant reduction in nitrogen per unit leaf area. The changes in stomatal conductance are therefore less than would occur if leaf area were not to change. As irradiance increases, the modelled leaf area decreases, and nitrogen/leaf area increases. As total available nitrogen increases, leaf area also increases. In all the examples examined, the sharing by leaf area and properties per unit leaf area means that predicted changes in either are less than if predicted in isolation. We suggest that were plant density to be included, it too would further share the response, further diminishing the changes required per unit leaf area.
  • Farquhar, Cooperative Research Centre for Greenhouse Accounting and Environmental Biology Group, Research School of Biological Sciences, Australian National University, ACT 2601, Australia E-mail: farquhar@rsbs.anu.edu.au (email)
  • Buckley, Cooperative Research Centre for Greenhouse Accounting and Environmental Biology Group, Research School of Biological Sciences, Australian National University, ACT 2601, Australia E-mail: tnb@nn.au
  • Miller, Research School of Biological Sciences, Australian National University, ACT 2601, Australia E-mail: jmm@nn.au

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles