Current issue: 58(1)

Under compilation: 58(2)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'GLO'

Category : Article

article id 5606, category Article
Pekka E. Kauppi, Pekka Hänninen, Helena M Henttonen, Antti Ihalainen, Eino Lappalainen, Maximilian Posch, Michael Starr, Pekka Tamminen. (1997). Carbon reservoirs in peatlands and forests in the boreal regions of Finland. Silva Fennica vol. 31 no. 1 article id 5606. https://doi.org/10.14214/sf.a8507
Keywords: climate change; boreal forests; peatlands; global warming; carbon reservoirs; carbon pools; global carbon cycles; biomass carbon; ecological temperature gradient
Abstract | View details | Full text in PDF | Author Info

The carbon reservoir of ecosystems was estimated based on field measurements for forests and peatlands on an area in Finland covering 263,000 km2 and extending about 900 km across the boreal zone from south to north. More than two thirds of the reservoir was in peat, and less than ten per cent in trees. Forest ecosystems growing on mineral soils covering 144,000 km2 contained 10–11 kg C m-2 on an average, including both vegetation (3.4 kg C m-2) and soil (uppermost 75 cm; 7.2 kg C m-2). Mire ecosystems covering 65,000 km2 contained an average of 72 kg C m-2 as peat. For the landscape consisting of peatlands, closed and open forests, and inland water, excluding arable and built-up land, a reservoir of 24.6 kg C m-2 was observed. This includes the peat, forest soil and tree biomass. This is an underestimate of the true total reservoir, because there are additional unknown reservoirs in deep soil, lake sediments, woody debris, and ground vegetation. Geographic distributions of the reservoirs were described, analysed and discussed. The highest reservoir, 35–40 kg C m-2, was observed in sub-regions in central western and north western Finland. Many estimates given for the boreal carbon reservoirs have been higher than those of ours. Either the Finnish environment contains less carbon per unit area than the rest of the boreal zone, or the global boreal reservoir has earlier been overestimated. In order to reduce uncertainties of the global estimates, statistically representative measurements are needed especially on Russian and Canadian peatlands.

  • Kauppi, E-mail: pk@mm.unknown (email)
  • Hänninen, E-mail: ph@mm.unknown
  • Henttonen, E-mail: hh@mm.unknown
  • Ihalainen, E-mail: ai@mm.unknown
  • Lappalainen, E-mail: el@mm.unknown
  • Posch, E-mail: mp@mm.unknown
  • Starr, E-mail: ms@mm.unknown
  • Tamminen, E-mail: pt@mm.unknown
article id 5591, category Article
Egbert Beuker, Seppo Kellomäki, Marja Kolström. (1996). Changes in wood production of Picea abies and Pinus sylvestris under a warmer climate: comparison of field measurements and results of a mathematical model. Silva Fennica vol. 30 no. 2–3 article id 5591. https://doi.org/10.14214/sf.a9236
Keywords: Pinus sylvestris; climate change; Picea abies; simulation model; global warming; provenance trials
Abstract | View details | Full text in PDF | Author Info

To project the changes in wood production of Norway spruce (Picea abies (L.) H. Karst.) and Scots pine (Pinus sylvestris L.) in Finland as a result of climate change, two separate studies were made. The first study, at the Faculty of Forestry, University of Joensuu, based its projections on mathematical models; the second one, at the Finnish Forest Research Institute, based projections on measurements of wood production in two series of aged provenance experiments. The results of the two studies were similar for both species: after a 4°C increase of the annual mean temperature a drastic increase in wood production in northern Finland, but little effect, or even some decrease in the southern part of the country. However, the assumptions used in the two studies differed. One important difference was that in the models the temperature is assumed to be increasing gradually over the years, whereas in the provenance experiments, climate changed immediately when the seedlings were transferred to the planting sites. Another problem with the provenance experiments is that when material is moved in a north-south direction in Finland, not only temperature but also photoperiod changes markedly. To compare these two studies, site factors (e.g. soil type, temperature, precipitation) and silvicultural factors (e.g. plant spacing, survival, time of thinning, thinning intensity) from the provenance experiments were included a variable in the mathematical models.

  • Beuker, E-mail: eb@mm.unknown (email)
  • Kellomäki, E-mail: sk@mm.unknown
  • Kolström, E-mail: mk@mm.unknown
article id 5586, category Article
Robert A. Monserud, Olga V. Denissenko, Tatyana P. Kolchugina, Nadja M. Tchebakova. (1996). Change in Siberian phytomass predicted for global warming. Silva Fennica vol. 30 no. 2–3 article id 5586. https://doi.org/10.14214/sf.a9231
Keywords: climate change; Siberia; taiga; phytomass; global warming; carbon cycle; vegetation modelling; bioclimatology; vegetation zone
Abstract | View details | Full text in PDF | Author Info

An equilibrium model driven by climatic parameters, the Siberian Vegetation Model, was used to estimate changes in the phytomass of Siberian vegetation under climate change scenarios (CO2 doubling) from four general circulation models (GCM's) of the atmosphere. Ecosystems were classified using a three-dimensional climatic ordination of growing degree days (above a 5 °C threshold), Budyko's dryness index (based on radiation balance and annual precipitation), and Conrad's continentality index. Phytomass density was estimated using published data of Bazilevich covering all vegetation zones in Siberia. Under current climate, total phytomass of Siberia is estimated to be 74.1 ± 2.0 Pg (petagram = 1,015 g). Note that this estimate is based on the current forested percentage in each vegetation class compiled from forest inventory data.

Moderate warming associated with the GISS (Goddard Institute for Space Studies) and OSU (Oregon State Univ.) projections resulted in a 23–26 % increase in phytomass (to 91.3 ± 2.1 Pg and 93.6 ± 2.4 Pg, respectively), primarily due to an increase in the productive Southern Taiga and Sub-taiga classes. Greater warming associated with the GFDL (General Fluid Dynamics Laboratory) and UKMO (United Kingdom Meteorological Office) projections resulted in a small 3–7 % increase in phytomass (to 76.6 ± 1.3 Pg and 79.6 ± 1.2 Pg, respectively). A major component of predicted change using GFDL and UKMO is the introduction of a vast Temperate Forest-Steppe class covering nearly 40% of the area of Siberia, at the expense of Taiga; with current climate, this vegetation class is nearly non-existent in Siberia. In addition, Sub-boreal Forest-Steppe phytomass double with all GCM predictions. In all four climate change scenarios, the predicted phytomass stock of all colder, northern classes is reduced considerably (viz., Tundra, Fore Tundra, northern Taiga, and Middle Taiga). Phytomass in Sub-taiga increases greatly with all scenarios, from a doubling with GFDL to quadrupling with OSU and GISS. Overall, phytomass of the Taiga biome (Northern, Middle, Southern and Sub-taiga) increased 15% in the moderate OSU and GISS scenarios and decreased by a third in the warmer UKMO and GFDL projections. In addition, a sensitivity analysis found that the percentage of a vegetation class that is forested is a major factor determining phytomass distribution. From 25 to 50% more phytomass is predicted under climate change if the forested proportion corresponding to potential rather than current vegetation is assumed.

  • Monserud, E-mail: rm@mm.unknown (email)
  • Denissenko, E-mail: od@mm.unknown
  • Kolchugina, E-mail: tk@mm.unknown
  • Tchebakova, E-mail: nt@mm.unknown
article id 5424, category Article
Timo Pukkala, Veli Pohjonen. (1990). Use of linear programming in land use planning in the Ethiopian highlands. Silva Fennica vol. 24 no. 2 article id 5424. https://doi.org/10.14214/sf.a15578
Keywords: plantations; fuelwood; mathematical models; grazing; Eucalyptus globulus; arable crops
Abstract | View details | Full text in PDF | Author Info

Linear programming was used to analyse the land use alternatives in the Debre Birhan Fuelwood Plantation area, in the central highlands of Ethiopia. The region represents a rural, high-altitude area, where the main land uses are grazing and cultivation of barley, wheat and pulses. To alleviate fuelwood shortage, large plantations of Eucalyptus globulus Labill. have been established. Livestock has traditionally used the major part of the production capacity of the sites. A decrease in the number of cattle would facilitate a considerable increase in the production of cereals, pulses, fuelwood and construction timber. The optimal share of the land for arable crops, grazing and tree plantations would be about 40, 45 and 15% respectively.

The PDF includes an abstract in Finnish.

  • Pukkala, E-mail: tp@mm.unknown (email)
  • Pohjonen, E-mail: vp@mm.unknown
article id 5363, category Article
Veli Pohjonen, Timo Pukkala. (1988). Profitability of establishing Eucalyptus globulus plantations in the Central Highlands of Ethiopia. Silva Fennica vol. 22 no. 4 article id 5363. https://doi.org/10.14214/sf.a15520
Keywords: reforestation; Ethiopia; Eucalyptus globulus; simulation of growth; economic analysis; land use planning
Abstract | View details | Full text in PDF | Author Info

The economic analysis is based on computer simulations which covered a seedling rotation and three successive coppice rotations. Calculations were carried out for the four site productivity classes in Eucalyptus globulus plantations. The rotation length that maximized the land expectation value is 12–20 years for seedling rotation and 8–16 years for coppice rotations with discounting rates 2–8%. The mean wood production is over 40 m3/ha/a in the best site class and about 10 m3/ha/a in the poorest class with rotation lengths ranging from 10 to over 20 years. Thinnings increase the wood production and land expectation value by a few percentage points. In areas suitable to Eucalyptus globulus growth, the land expectation value is considerably higher in forestry than in agriculture, except in very poor areas or with very high rate of interest.

The PDF includes an abstract in Finnish.

  • Pohjonen, E-mail: vp@mm.unknown (email)
  • Pukkala, E-mail: tp@mm.unknown

Category : Research article

article id 10754, category Research article
Robert E. Tatina, Brice B. Hanberry. (2022). Historical forests of the Black Hills, South Dakota, USA, determined using General Land Office surveys. Silva Fennica vol. 56 no. 3 article id 10754. https://doi.org/10.14214/sf.10754
Keywords: fire; Ponderosa pine; settlement; ecological reference; Government Land Office; GLO; range of variation
Highlights: Based on the U.S. General Land Office survey, the historical (1878–1915) Black Hills landscape in southwestern South Dakota, USA, was relatively open; Historical survey points with trees had lesser tree densities than current forest plots; Ponderosa pine has become less dominant as fire-sensitive species have increased; This study provides another line of evidence of a changed forest structure.
Abstract | Full text in HTML | Full text in PDF | Author Info

Forests in the western United States generally have increased in tree density since Euro-American settlement, particularly through increases in fire-sensitive species, such as spruces, firs, and junipers. Like most areas, the Black Hills region in western South Dakota and eastern Wyoming was logged for forest products and underwent agricultural conversion before historical forests were documented. To supplement historical reconstructions and accounts, we compared tree composition and densities (diameters ≥12.7 cm at 1.37 m above ground height) from historical General Land Office (GLO) records (years 1878 to 1915) and current Forest Inventory and Analysis (FIA) tree surveys (years 2011 to 2016) in the Black Hills Highlands of South Dakota. For composition, ponderosa pine (Pinus ponderosa P. Lawson & C. Lawson) decreased from 95% to 86% of all trees, with a consequent increase specifically of white spruce (Picea glauca (Moench) Voss) from 1.5% to 6.7% of all trees. Ponderosa pine currently is smaller in mean diameter by 7.4 cm, while white spruce is larger in mean diameter by 2.4 cm than historically. When the 35% of historical survey points without recorded trees were excluded, historical tree densities indicated an overall forested structure of savannas and open woodlands with tree densities ranging from 66 trees ha–1 to 162 trees ha–1. However, historical forests of the Black Hills incorporated dense stands. Tree densities have increased two- to more than four-fold, to 311 trees ha–1 currently. These comparisons provide another source of information, paralleling changes documented in surface fire-dependent pine and oak forests throughout the United States, of transitions in forest composition and structure since Euro-American settlement.

  • Tatina, Department of Biological Sciences, Dakota Wesleyan University, Mitchell, SD 57301 USA E-mail: rotatina@dwu.edu (email)
  • Hanberry, USDA Forest Service, Rocky Mountain Research Station, Rapid City, SD 57702 USA E-mail: brice.hanberry@usda.gov
article id 1384, category Research article
Staffan Berg, Erik Valinger, Torgny Lind, Tommi Suominen, Diana Tuomasjukka. (2015). Comparison of co-existing forestry and reindeer husbandry value chains in northern Sweden. Silva Fennica vol. 50 no. 1 article id 1384. https://doi.org/10.14214/sf.1384
Keywords: carbon sequestration; agroforestry; global warming potential; gross value added; employment; ToSIA
Highlights: Forestry adapted to reindeer husbandry results in: potential economic improvement of reindeer husbandry, potential reduced cuttings in forestry and reduced wood flow to industry, reduced gross value added for forest industry and increased carbon storage in standing forest.
Abstract | Full text in HTML | Full text in PDF | Author Info

Forestry in Malå, northern Sweden, coexists with other land uses. Reindeer husbandry is in the area for centuries and requires large areas of grazing land. Competing land uses may threaten the Malå Sami village. The aim of the study was to evaluate increased consideration in forest management towards 1) reindeer husbandry, 2) nature and 3) a combination of the two. These scenarios were compared with forest management as it was in 2009. Results indicate that all three scenarios lead to a decrease in annual harvesting volumes of 0.2 to 0.4 million m3. Forest industry dominated the economic viability in the area. Forest management adapted to the needs of reindeer husbandry resulted in less potential for yearly harvest, employment and profits from forest industry. On the other hand, it led to an increase in growing stock and consequently the potential for carbon sequestration over time. Indeed the increased sequestration would compensate for all fossil emissions of carbon from the Forest Wood Chain (FWC). The nature scenario had minor effects on economic result and on the emissions of fossil carbon. The combined scenario gave a reduced economic performance for the FWC. A scenario based on forest management accommodating the needs of reindeer husbandry gave the best economic result for the reindeer chain, due to high survival rate of the reindeer. However the economic importance of reindeer husbandry in the region was small compared to the FWC. Results from scenario analysis could serve as a platform for mutual understanding between stakeholders.

  • Berg, Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, Skogsmarksgränd, SE-90 183 Umeå, Sweden E-mail: staffan.berg@efi.int (email)
  • Valinger, Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, Skogsmarksgränd, SE-90 183 Umeå, Sweden E-mail: erik.valinger@slu.se
  • Lind, Swedish University of Agricultural Sciences (SLU), Department of Forest Resource Management, Skogsmarksgränd, SE-90 183 Umeå, Sweden E-mail: torgny.lind@slu.se
  • Suominen, European Forest Institute, Sustainability and Climate Change Research Programme, Yliopistokatu 6, FI-80100 Joensuu, Finland E-mail: tommi.suominen@efi.int
  • Tuomasjukka, European Forest Institute, Sustainability and Climate Change Research Programme, Yliopistokatu 6, FI-80100 Joensuu, Finland E-mail: diana.tuomasjukka@efi.int
article id 32, category Research article
Susete Marques, Jordi Garcia-Gonzalo, José G. Borges, Brigite Botequim, M. Manuela Oliveira, José Tomé, Margarida Tomé. (2011). Developing post-fire Eucalyptus globulus stand damage and tree mortality models for enhanced forest planning in Portugal. Silva Fennica vol. 45 no. 1 article id 32. https://doi.org/10.14214/sf.32
Keywords: forest fires; forest management; Eucalyptus globulus Labill; damage model; post-fire mortality
Abstract | View details | Full text in PDF | Author Info
Forest and fire management planning activities are carried out mostly independently of each other. This paper discusses research aiming at the development of methods and tools that can be used for enhanced integration of forest and fire management planning activities. Specifically, fire damage models were developed for Eucalyptus globulus Labill stands in Portugal. Models are based on easily measurable forest characteristics so that forest managers may predict post-fire mortality based on forest structure. For this purpose, biometric data and fire-damage descriptors from 2005/2006 National Forest Inventory plots and other sample plots within 2006, 2007 and 2008 fire areas were used. A three-step modelling strategy based on logistic regression methods was used. In the first step, a model was developed to predict whether mortality occurs after a wildfire in a eucalypt stand. In the second step the degree of damage caused by wildfires in stands where mortality occurs is quantified (i.e. percentage of mortality). In the third step this mortality is distributed among trees. Data from over 85 plots and 1648 trees were used for modeling purposes. The damage models show that relative damage increases with stand basal area. Tree level mortality models indicate that trees with high diameters, in dominant positions and located in regular stands are less prone to die when a wildfire occurs.
  • Marques, Technical University of Lisbon, School of Agriculture, Forest Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal E-mail: smarques@isa.utl.pt (email)
  • Garcia-Gonzalo, Technical University of Lisbon, School of Agriculture, Forest Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal E-mail: jgg@nn.pt
  • Borges, Technical University of Lisbon, School of Agriculture, Forest Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal E-mail: jgb@nn.pt
  • Botequim, Technical University of Lisbon, School of Agriculture, Forest Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal E-mail: bb@nn.pt
  • Oliveira, Technical University of Lisbon, School of Agriculture, Forest Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal E-mail: mmo@nn.pt
  • Tomé, Technical University of Lisbon, School of Agriculture, Forest Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal E-mail: jt@nn.pt
  • Tomé, Technical University of Lisbon, School of Agriculture, Forest Research Center, Tapada da Ajuda, 1349-017 Lisboa, Portugal E-mail: mt@nn.pt
article id 484, category Research article
Pekka E. Kauppi. (2003). New, low estimate for carbon stock in global forest vegetation based on inventory data. Silva Fennica vol. 37 no. 4 article id 484. https://doi.org/10.14214/sf.484
Keywords: carbon stock; global forest; vegetation biomass
Abstract | View details | Full text in PDF | Author Info
Several reports by Intergovernmental Panel on Climate Change (IPCC) have referred to published estimates ranging from 352 to 536 x 109 tons for the global pool of carbon in forest vegetation. However, a rounded estimate of 300 x 109 tons can be derived from the recent Global Forest Resources Assessment 2000 of the FAO, as shown in this paper. By comparing with independent empirical evidence as published in recent scientific literature and by considering sampling principles and the disturbance cycles of large forest regions, it is argued that the new lower estimate is more realistic. A downward correction of the estimate would make an important contribution to balancing the global carbon budget.
  • Kauppi, International Institute for Applied Systems Analysis (IIASA), A-2361 Laxenburg, Austria. Present address: Environmental Science and Policy, Department of Limnology and Environmental Protection, PO Box 27, FIN-00014 University of Helsinki, Finland E-mail: pekka.kauppi@helsinki.fi (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles