Current issue: 57(1)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Antti Kilpeläinen

Category: Research article

article id 10243, category Research article
Laura Pikkarainen, Jaana Luoranen, Antti Kilpeläinen, Teppo Oijala, Heli Peltola. (2020). Comparison of planting success in one-year-old spring, summer and autumn plantings of Norway spruce and Scots pine under boreal conditions. Silva Fennica vol. 54 no. 1 article id 10243. https://doi.org/10.14214/sf.10243
Keywords: Pinus sylvestris; Picea abies; seedling damage; forest regeneration; field performance; planting season
Highlights: In Norway spruce, 84% of all plantings were successful, whereas in Scots pine, the corresponding number was 52%; The major reason for poor planting results was poor work quality; An extended planting season is possible for Norway spruce in southern and central Finland; In Scots pine, there are still large uncertainties in the success of summer and autumn plantings.
Abstract | Full text in HTML | Full text in PDF | Author Info

In Nordic countries, tree planting of seedlings is mainly performed during spring and early summer. Interest has increased in extending the planting window throughout the unfrozen growing season. This study compared the success of one-year-old spring, summer and autumn plantings in practical forestry in Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) in southern and central Finland. Planting success was based on the number of viable seedlings per hectare relative to a species-specific target density. The influence of different factors to poor planting results were determined, including quality of site preparation and planting, and sources of natural damage. Overall, in Norway spruce, 85, 69 and 84% and in Scots pine 53, 55 and 40% of spring, summer and autumn plantings succeeded. In Norway spruce, the planting results were consistent between the southern and central regions, whereas in Scots pine, the success was slightly lower in the south. The poor work quality and a low density of appropriate planting spots, contributed to poor planting results, regardless of planting season, region or tree species. Considering different damages, especially mammal damage contributed to the failure of Scots pine spring plantings, whereas in summer plantings, corresponding single failure reason could not be identified. Based on our findings, extending the planting season of Norway spruce could be recommended in both regions. For Scots pine, there is still significant uncertainty about the success of summer and autumn plantings, partially due to the limited number of plantings available for analyses.

  • Pikkarainen, School of Forest Sciences, University of Eastern Finland, Yliopistonkatu 7, FI-80100 Joensuu, Finland E-mail: laura.pikkarainen@uef.fi (email)
  • Luoranen, Natural Resources Institute Finland (Luke), Production Systems, Neulaniementie 5, FI-70210 Kuopio, Finland E-mail: jaana.luoranen@luke.fi
  • Kilpeläinen, School of Forest Sciences, University of Eastern Finland, Yliopistonkatu 7, FI-80100 Joensuu, Finland E-mail: antti.kilpelainen@uef.fi
  • Oijala, Metsä Group, Metsä Forest, Kuormaajantie 7, FI-40320 Jyväskylä, Finland E-mail: teppo.oijala@metsagroup.com
  • Peltola, School of Forest Sciences, University of Eastern Finland, Yliopistonkatu 7, FI-80100 Joensuu, Finland E-mail: heli.peltola@uef.fi
article id 455, category Research article
Seppo Kellomäki, Matti Maajärvi, Harri Strandman, Antti Kilpeläinen, Heli Peltola. (2010). Model computations on the climate change effects on snow cover, soil moisture and soil frost in the boreal conditions over Finland. Silva Fennica vol. 44 no. 2 article id 455. https://doi.org/10.14214/sf.455
Keywords: climate change; soil frost; precipitation; temperature; A2 climate scenario; snow accumulation; soil carrying capacity; soil moisture
Abstract | View details | Full text in PDF | Author Info
This study considered how climate change affects the accumulation of snow, the soil moisture and soil frost at sites without tree cover in boreal conditions in Finland (60°–70°N). An increase of 4.5 °C in annual mean temperature and 20 % in annual precipitation were assumed for Finland by the year 2100 according to A2 emission scenario. Along with climate, the soil type of the permanent inventory plots of the Finnish National Forest Inventory was used. Soil and climate data were combined by using a process-based ecosystem model. Calculations were done for four periods: current climate (1971–2000), near future (2001–2020), mid-term future (2021–2050) and long-term future (2071–2100). According to our simulations, the average monthly duration and depth of snow decreased over the simulation period. However, the increasing precipitation may locally increase the snow depths in the mid-term calculations. In the autumn and winter, the average volumetric soil moisture content slightly increased in southern Finland during the near future, but decreased towards the end of the century, but still remained on a higher level than presently. In northern Finland, the soil moisture in the autumn and winter increased by the end of this century. In the summertime soil moisture decreased slightly regardless of the region. Throughout Finland, the length and the depth of soil frost decreased by the end of the century. In the south, the reduction in the depth was largest in the autumn and spring, while in the mid-winter it remained relatively deep in the middle of the century. In the north, the depth tended to increase during the first two calculation periods, in some areas, even during the third calculation period (2071–2100) due to reduced insulation effects of snow during cold spells. The wintertime increase in soil moisture and reduced soil frost may be reflected to reduced carrying capacity of soil for timber harvesting.
  • Kellomäki, University of Eastern Finland, School of Forest Sciences, Joensuu, Finland E-mail: seppo.kellomaki@uef.fi (email)
  • Maajärvi, University of Eastern Finland, School of Forest Sciences, Joensuu, Finland E-mail: mm@nn.fi
  • Strandman, University of Eastern Finland, School of Forest Sciences, Joensuu, Finland E-mail: hs@nn.fi
  • Kilpeläinen, University of Eastern Finland, School of Forest Sciences, Joensuu, Finland E-mail: ak@nn.fi
  • Peltola, University of Eastern Finland, School of Forest Sciences, Joensuu, Finland E-mail: hp@nn.fi
article id 202, category Research article
Tuula Nuutinen, Antti Kilpeläinen, Hannu Hirvelä, Kari Härkönen, Veli-Pekka Ikonen, Reetta Lempinen, Heli Peltola, Lars Wilhelmsson, Seppo Kellomäki. (2009). Future wood and fibre sources – case North Karelia in eastern Finland. Silva Fennica vol. 43 no. 3 article id 202. https://doi.org/10.14214/sf.202
Keywords: National Forest Inventory; fibre length; wood density; proportion of latewood; forest scenario analysis
Abstract | View details | Full text in PDF | Author Info
Information on the potential wood supply is important for the wood industry. In this study, the future development of growing stock, cutting potential and wood properties corresponding to the regional scenario of North Karelian Forest Programme 2006–2010 was analysed. The simulations were performed by employing the Finnish MELA system together with the sample plot and tree data of the 9th Finnish National Forest Inventory (NFI9) as initial data for the simulations. Disc-based models for basic wood density, proportion of latewood and fibre length of Norway spruce and Scots pine in Sweden were calibrated and integrated into the MELA system. The wood properties at breast height of both harvested and standing trees were analysed in different strata (age, site type and cutting method) during the scenario period of 50 years (2002–2052). The average wood properties within the same strata varied only slightly over time. However, the results for different strata differed considerably. In general, wood density, fibre length and proportion of latewood increased, on average, as a function of tree age and along with a decrease in site fertility (excl. wood density and proportion of latewood in harvested Norway spruce in the first case and fibre length in the latter case for both species). For trees less than 80 years, properties in harvested trees were equal to or slightly greater than those of standing trees. The values for clear-cuttings were greater or equal to those of thinnings (excl. wood density and proportion of latewood in Norway spruce). The study demonstrates the value of model-based analyses utilising NFI tree measurements in regions that are considered to be sources of raw material.
  • Nuutinen, European Forest Institute, Torikatu 34, FI-80100 Joensuu, Finland E-mail: tuula.nuutinen@efi.int (email)
  • Kilpeläinen, University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: ak@nn.fi
  • Hirvelä, Finnish Forest Research Institute, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: hh@nn.fi
  • Härkönen, Finnish Forest Research Institute, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: kh@nn.fi
  • Ikonen, University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: vpi@nn.fi
  • Lempinen, Finnish Forest Research Institute, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: rl@nn.fi
  • Peltola, University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: hp@nn.fi
  • Wilhelmsson, Skogforsk, Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: lw@nn.fi
  • Kellomäki, University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: sk@nn.fi
article id 285, category Research article
Heli Peltola, Antti Kilpeläinen, Kari Sauvala, Tommi Räisänen, Veli-Pekka Ikonen. (2007). Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine. Silva Fennica vol. 41 no. 3 article id 285. https://doi.org/10.14214/sf.285
Keywords: thinning response; ring width; early wood; late wood; intra-ring wood density; X-ray densitometry
Abstract | View details | Full text in PDF | Author Info
  • Peltola, University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: heli.peltola@joensuu.fi (email)
  • Kilpeläinen, University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: ak@nn.fi
  • Sauvala, Finnish Forest Research Institute, P.O. Box 18, FI-01301 Vantaa, Finland E-mail: ks@nn.fi
  • Räisänen, University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: tr@nn.fi
  • Ikonen, University of Joensuu, Faculty of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: vpi@nn.fi

Category: Review article

article id 1660, category Review article
Lars Rytter, Morten Ingerslev, Antti Kilpeläinen, Piritta Torssonen, Dagnija Lazdina, Magnus Löf, Palle Madsen, Peeter Muiste, Lars-Göran Stener. (2016). Increased forest biomass production in the Nordic and Baltic countries – a review on current and future opportunities. Silva Fennica vol. 50 no. 5 article id 1660. https://doi.org/10.14214/sf.1660
Keywords: fertilization; tree breeding; tree species; coppice; cultivation areas; growth increment; nurse crops
Highlights: Annual growth is 287 million m3 in the forests of the Nordic and Baltic countries; Growth can be increased by new tree species, tree breeding, high-productive management systems, fertilization and afforestation of abandoned agricultural land; We predict a forest growth increment of 50–100% is possible at the stand scale; 65% of annual growth is harvested today.
Abstract | Full text in HTML | Full text in PDF | Author Info

The Nordic and Baltic countries are in the frontline of replacing fossil fuel with renewables. An important question is how forest management of the productive parts of this region can support a sustainable development of our societies in reaching low or carbon neutral conditions by 2050. This may involve a 70% increased consumption of biomass and waste to meet the goals. The present review concludes that a 50–100% increase of forest growth at the stand scale, relative to today’s common level of forest productivity, is a realistic estimate within a stand rotation (~70 years). Change of tree species, including the use of non-native species, tree breeding, introduction of high-productive systems with the opportunity to use nurse crops, fertilization and afforestation are powerful elements in an implementation and utilization of the potential. The productive forests of the Nordic and Baltic countries cover in total 63 million hectares, which corresponds to an average 51% land cover. The annual growth is 287 million m3 and the annual average harvest is 189 million m3 (65% of the growth). A short-term increase of wood-based bioenergy by utilizing more of the growth is estimated to be between 236 and 416 TWh depending on legislative and operational restrictions. Balanced priorities of forest functions and management aims such as nature conservation, biodiversity, recreation, game management, ground water protection etc. all need consideration. We believe that these aims may be combined at the landscape level in ways that do not conflict with the goals of reaching higher forest productivity and biomass production.

  • Rytter, The Forestry Research Institute of Sweden (Skogforsk), Ekebo 2250, SE-26890 Svalöv, Sweden E-mail: lars.rytter@skogforsk.se (email)
  • Ingerslev, Copenhagen University, Department of Geosciences and Natural Resource Management, Rolighedsvej 23, DK-1958, Frederiksberg C, Denmark E-mail: moi@ign.ku.dk
  • Kilpeläinen, Finnish Environment Institute, Joensuu Office, P.O. Box 111, FI-80101 Joensuu, Finland; University of Eastern Finland, Faculty of Science and Forestry, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: antti.kilpelainen@ymparisto.fi
  • Torssonen, University of Eastern Finland, Faculty of Science and Forestry, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: Piritta.Torssonen@uef.fi
  • Lazdina, Latvian State Forest Research Institute “Silava”, 111 Riga str, Salaspils, LV 2169 Latvia E-mail: Dagnija.Lazdina@silava.lv
  • Löf, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, Box 49 SE-230 53 Alnarp, Sweden E-mail: magnus.lof@slu.se
  • Madsen, Copenhagen University, Department of Geosciences and Natural Resource Management, Rolighedsvej 23, DK-1958, Frederiksberg C, Denmark E-mail: pam@ign.ku.dk
  • Muiste, Estonian University of Life Sciences, Institute of Forestry and Rural Engineering, Dept. Forest Industry, Kreutzwaldi 5, Tartu 51014, Estonia E-mail: Peeter.Muiste@emu.ee
  • Stener, The Forestry Research Institute of Sweden (Skogforsk), Ekebo 2250, SE-26890 Svalöv, Sweden E-mail: Lars-Goran.Stener@skogforsk.se

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles