Current issue: 58(4)
The use of random parameter models in forestry has been proposed as one method of incorporating different levels of information into prediction equations. By explicitly considering the variance-covariance structure of observations and considering some model parameters as random rather than fixed, one can incorporate more complex error structures in analysing data.
Competition indices and variance component techniques were applied to 92 Scots pine (Pinus sylvestris L.) -dominated permanent sample plots on drained peatlands in Northern Finland. By quantifying stand, plot, and tree level variation, it was possible to identify the level (stand, plot or tree) at which the explanatory variables contributed to the model. The replication of plots within stands revealed little variation among plots within a single stand but significant variation occurred at stand and tree levels. Positive and negative effects of inter-tree competition are identified by examining simple correlation statistics and the random parameter model.
The effects of wood ash and PK fertilization on natural regeneration and sowing of Scots pine (Pinus sylvestris L.) were studied in field experiments on nitrogen-poor (Ntot 0.87–1.26%) peat substrates. The study material was derived from three drained, nutrient-poor pine mires (64°52’ N, 25°08’ E) at Muhos, near Oulu, Finland. The experimental fields were laid out in 1985 as a split-split-plot design including the following treatments; mounding, natural regeneration and sowing and fertilization; PK (400 kg ha-1) and wood ash (5,000 kg ha-1). The seedlings were inventoried in circles in July–August 1991.
Changes in the vegetation were small and there were no statistical differences due to the fertilization treatments in the ground vegetation. PK or ash fertilization did not cause vegetation changes harmful to Scots pine regeneration on nitrogen-poor peatlands. Both sowing and fertilization significantly increased the number of pine seedlings, but not their height. Wood ash increased seedling number more than PK fertilizer. The number of seedlings varied from 7,963 (control) to 42,781 ha-1 (mounding + sowing + ash). The seedling number was adequate for successful regeneration even on non-mounded, non-fertilized naturally regenerated plots.
The number of birch seedlings varied more than that of pine (370–25,927 ha-1). Mounding especially increased the number of birches. The difference between PK fertiliser and ash was less pronounced than that for pine. In addition, to the field studies the effects of ash and PK fertilizer on the germination of Scots pine seeds was studied in a greenhouse experiment. Soaking in ash solutions strongly reduced seed germination, while the PK solution was less harmful.
A spatial growth model is presented for Scots pine (Pinus sylvestris L.) on a dwarf-shrub pine mire drained 14 years earlier. The growth model accounts for the variation in tree diameter growth owing to the competition between trees, the distance between tree and ditch, and the time passed since drainage. The model was used to study the effect of tree arrangement on the post-drainage growth of a pine stand. Clustering of trees decreased the volume growth by 9–20% as compared to a regular spatial distribution. Stand volume growth, for a given number of stems, was at its maximum and variation in diameter growth at its minimum when the stand density on the ditch border was 1.5–5 higher than midway between two adjacent ditches.
The influence of different fertilization treatments and ditch spacings on the height growth of young Scots pine (Pinus sylvestris L.) seedling stands growing under various climatic regimes were determined. Comparisons were made between naturally regenerated and planted seedling stands. The effective temperature sum had a stronger effect on the height growth of planted seedlings, and in Northern Finland the planted seedlings seemed to be influenced to a greater degree by the adverse climatic conditions. The heavier the dose of fertilizer that had been applied, the greater the difference in growth caused by macroclimate. A considerably larger proportion of natural seedlings were located on hummocks compared with that of planted seedlings, irrespective of the region. On plots with wider ditch spacings, seedlings growing on hummocks were superior in height growth to those on flat surfaces.
The PDF includes an abstract in Finnish.
Refertilization with PK, about 15 years after the first fertilizer application, increased tree growth and the amount of nutrients in tree litter in Scots pine (Pinus sylvestris L.) and birch (mainly Betula pubescens Erhr.) stands on a drained fertile mire in Northern Finland (65°34 N’, 25°42’ E). The increase in growth and nutrient contents after refertilization was greatest in the mature pine stand where the application of nitrogen and micronutrients gave an additional response compared to the PK-application.
The PDF includes an abstract in Finnish.
The area of stands studied by line plot survey was 594 ha. On the basis of the length of the inventory line the estimated proportion of harvesting strips was 14% and that of ditch openings 6% of the area. The calculated strip road spacing was 29 m. The option of the minimum diameter made it difficult to use the number of stems as criterion for thinning intensity. Thinning intensity evaluated according to the basal area had been stronger than recommended with low values of dominant height and milder with high values. The estimated removal according to stumps was 38 m3/ha on the average between the strips. The real removal has, however, been larger than that, as the strip road openings are made in connection with the first thinning.
The PDF includes an abstract in English.
The effect of drainage on structure of tree stands is analysed by comparing the average structural characteristics (e.g. diameter distribution) of stands in the data for different drainage age classes and selected site types. The material consists of ca. 4,400 relascope sample plots, which are part of a large drainage area inventory project. The uneven-aged structure of the virgin peatland forest is preserved for several decades after drainage. This is enhanced by the post-drainage increase of small-diameter trees, especially birch. The number of trees per hectare increased during a period of ca. 30 years and levelled off thereafter. The increase in the number of saw log stems is clearly related to the fertility of the site and its geographical location.
The PDF includes a summary in English.
This is the latest report in a series of publications from an on-going investigation which is concerned with the influence of different fertilization treatments and ditch spacings on the growth of Scots pine (Pinus sylvestris L.) seedlings and transplants growing on nutrient drained poor bogs in different parts of Finland. This paper concentrates on duration of the growth response to NPK-fertilization on the experimental plots. The experiment was established and the treatments performed in 1965–66.
The results show that climate, expressed as effective temperature sum (dd°C, threshold +5°C) has a clear influence on the duration of the fertilization effect. In Southern Finland (>1,200 dd°C), the duration was at least 15 years. In Central Finland (1,200–1,000 dd°C), it appears to be almost 10 years, and in Northern Finland (<1,000 dd°C), slightly shorter. The amount of fertilizer applied clearly influenced the duration of the fertilization effect. The dosage of 500 kg/ha (N 14, P 7.8, K 8.3 per cent) had, on average, a shorter duration than the greater dosages of 1,000 and 1,500 kg/ha. However, there was no clear difference between the latter two dosages.
The PDF includes a summary in Finnish.
The effects of variations in the intensity of drainage and NPK fertilization on the natural regeneration and planting results and the subsequent development of seedling stands under various climatic conditions on drained nutrient poor pine bogs was investigated in a 16-year-old study.
Comparison of height development of Scots pine (Pinus sylvestris L.) stands on drained peatlands to that of pine stands growing in mineral soil sites show that in Southern Finland the most efficient forest improvement measures (10 m ditch spacing and 1,000 kg/ha NPK-fertilization) resulted in growth that corresponds a to a height index of a stand in a Vaccinium type site. Less efficient treatment (30 m ditch spacing and no fertilizer) resulted in growth corresponding the development of young stand in a Calluna type site. In Northern Finland the effect of fertilization on height growth was almost negligible. This is possibly due to a decrease in the nitrogen mobilization from south to north of Finland. Thus, it seems evident that fertilization of young Scots pine stands on nutrient poor drained peatlands can be recommended only in the southern part of the country.
The effect of ditch spacing is same in the whole country. The narrower the spacing the better the height growth. In the south planted stands thrive better than naturally regenerated stands, but the situation is reversed in the north.
The PDF includes a summary in English.
The aim of the paper was to describe the development of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) seedling stands on drained peatlands and to find out the principal factors influencing their growth. The material under survey consists of 180 sample plots distributed from southern coast of Finland to the Polar Circle.
The most important growth factors have been the accumulated temperature sum, site quality, drainage intensity and silvicultural condition, such as the density of the stand, the proportion of birch in the stand, and the amount of possible shelterwoods. The influence of these factors, and to some extent the influence of fertilizing, and the disturbing effects of some forest damages, such as frost, growth disturbances and elk damages were investigated. Comparisons of the development in the seedling stands on drained peatlands with the known development of seedling stands in mineral soils were made.
The PDF includes a summary in English.
The objective of the investigation was to determine the differences between timber grown on a peatland before and after draining, in respect of compressive strength parallel to the grain, static bending strength and density. In addition, the characteristics of boundary zone between the wood formed before, and after the draining with wider growth rings was studied. 41 Scots pine (Pinus sylvestris L.) and 22 Norway spruce (Picea abies (L.) H. Karst.) trees were studied.
The compressive strength of pine usually decreased from the butt end upwards, but no trend was observed in spruce wood. In coniferous trees, wide-ringed wood formed subsequent to draining was slightly lighter than the close-ringed wood produced prior the draining. The density of pine as well as spruce increases as the width of the growth rings decrease up to a certain limit. The strength of the different kinds of wood seems to decrease from the butt end upwards.
In both species, the compressive strength parallel to the grain and the bending strength are lowest in such wood that contains exclusively wide-ringed wood formed subsequent to draining. Also, compressive and bending strength increase with decreasing width of the growth rings. The longitudinal shrinkage of compression wood in spruce was several times that of normal wood, and the bending strength was lower than that of normal wood particularly in spruce. The compressive strength parallel to the grain in dry condition was, however, higher than in normal wood both in pine and spruce.
The PDF includes a summary in English.
The present paper deals with the most important factors of peatland hydrology and the influence of forest drainage on the hydrology of peatland itself and its surroundings. It is compiled of six seminar papers written by students in the Department of Peatland Forestry in the University of Helsinki. Special attention is paid to the hydrological consequenses of the maintenance of drained areas. Also ways and measures to minimize the negative environmental effects of these treatments are discusses.
The PDF includes a summary in English.
The forestry working group of the committee for scientific and technical cooperation between Finland and the Soviet Union initiated cooperation work between the two countries in the field of forestry almost ten years ago. The Finnish organizations the Department of Peatland Forestry, the Finnish Forestry Research Institute, and the Institute of Peatland Forestry of the University of Helsinki participated in the activity. From the Soviet Union the participants have been the Ministry of Forestry, the Russian Federation of USSR, and the Forestry Research Institutes of Leningrad and Estonia.
This paper includes the papers presented in the joint symposium arranged at the Forest Field Station of University of Helsinki on 17.9.1979. The 9 Russian lectures and the 8 Finnish ones, are presented either in their entirety or slightly condensed variably in Finnish, English or Russian. The summary of the seminar is presented in English and in Russian.
The ash content has been found to correlate with the fertility of peatlands. Relationship between height of 80-year-old stands and ash content of peat in topmost 30 cm layer was examined in Lithuanian conditions. On drained peatlands with ash content of peat from 3% to 8% pine stands increase in height. Ash content of peat being about 7% Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) stands on drained sites are found to be of equal height. Ash content of peat more than 8–9% has no significant effect on growth of pine or spruce stands. Birch (Betula verrucosa (B. Pendula Roth.) and Betula pubescens Erhrh.), stands are less sensitive to ash content of peat compared with other species. Black alder (Alnus glutinosa L. Gaertn.) stands occurred in sites with ash content of peat more than 8–10%. The height of the stands become equal both in drained and undrained sites in the cases where ash content of peat is about 16–18%. Ash (Fraxinus exelsior L.) stands attain high productivity on drained sites with ash content of peat about 20%.
The PDF includes a summary in English.
During the next decade there will be a marked increase in the allowable cut in drained peatlands. At the same time, the mechanization in logging proceeds, and in short-distance haulage the use of forwarders will increase. This study, based on literature and some observations, deals with logging conditions in drained peatlands with special reference to the suitability of heavy logging machines for use in such terrain. In addition, soil frost and the bearing capacity of the frozen peat soil were studied.
Freezing of the soil in a drained peatland area depends prevailingly on the weather conditions during early winter. The factors influencing soil freezing of a drained peatland are completely different from those regulating the freezing of natural peat soils. The frost penetrates in general deeper in the drained than virgin peatland. The topmost peat layer does not, however, freeze uniformly. Generally speaking, the bearing capacity of a drained peat soil is lower than that of undrained peat due to lower water content.
It is concluded that heavy logging machines are probably not fitted for use in drained areas on peatland even if the average soil frost values recorded would suggest it. Moreover, because of their extremely superficial root systems, peatland forests are exposed to damages by heavy machines in thinning operations.
The PDF includes a summary in English.
The paper describes the results obtained from an investigation into the effect of ditch spacing, ditch depth and furrowing on ground water table and on development of a Scots pine (Pinus sylvestris L.) plantation on open small-sedge bog in Central Finland (60° 50’ N; 24° 20’ E), drained in 1967. The area was planted in 1968 with 2+1 Scots pine transplants, and fertilized with Y fertilizer for peat soils. The seedlings were measured in 1972.
The depth of the ground water table was greater, the narrower the ditch spacing. The water furrows shortened the duration of the high ground water and lowered the ground water table particularly in the case of ineffective drainage. The narrower the ditch spacing within the blocks, the higher were the young trees. On the other hand, the differences in the height of the trees between the ditch spacings were eliminated by the effect of the furrows.
The PDF includes a summary in English.
The paper deals with the relationships between macronutrients, ground vegetation and tree crop on a drained peatland area in Central Finland. The former herb-rich spruce swamp was drained in 1930s. The Norway spruce (Picea abies (L.) H. Karst.) stand was established by planting under a nurse crop of birch, which was removed later.
There was a negative correlation between the thickness of the peat layer and the volume and mean height of the growing stock. This was found to depend on the negative correlation prevailing between the potassium content of the topmost peat layer and the thickness of the peat cover. The deficiency of potassium is clearly discernible as deficiency symptoms in the needles, the intensity of which showed a strong correlation with the stand characteristics studied. Among the nutrient characteristics of the topmost peat layer, total potassium and the N/K and P/K ratios showed the closest correlation with the stand characteristics. The communities into which the ground vegetation was divided differed from each other with regard to the calcium content of the peat substrate.
The PDF includes a summary in English.
The paper describes the results obtained from an investigation into the effect of thinning of different intensity and fertilization on the depth and water equivalent of the snow cover as well as on the depth of the soil frost in a young Scots pine (Pinus sylvestris L.) stand growing on drained peatland in Central Finland. Thinnings and fertilization was carried out in 1968, and the snow cover was followed in the winters 1970/71 and 1971/72.
Only extremely heavy thinnings (60% of the volume) seemed to increase the depth and water equivalent of the snow cover. The indirect effect of fertilization on the snow cover was insignificant. In the clear-cut sample plot of the study, soil frost was either not found at all or the depths of the frozen soil layer was smaller than in the other plots. When deciding the silvicultural measures to be taken in the case of tree stands growing on drained peatlands, there seems to be reason to avoid radical thinnings. Otherwise, the favourable influence of the trees on a site on its water relationships will be diminished.
The PDF includes a summary in English.
The aim of the present study was to assess whether two-year old Betula verrucosa Ehrh. (now Betula pendula Roth.) transplants can be used in afforestation of drained peatlands and what factors affect the development of the young trees. The seedlings were planted in 1967. The site was repair planted next spring due to mortality caused by a undefined fungal disease, and the plantations were fertilized with NPK fertilizer (soil application. The seedlings were measured twice a year until the autumn 1970.
Only 28% of the original transplants, and 73.4% of the repair plantations were alive in 1970. In some cases, fertilization improved the results, while in others it was detrimental to the trees or had no effect on survival. According to peat analysis, the poor survival and development of the plants could be due to the too high ratios of N/Ca and N/P. Stunted or dead trees displayed often necrosis caused by Godronia multispora. According to the experiences, Betula verrucosa plantations are inferior to those obtained with Scots pine (Pinus sylvestris L.). In addition, the results indicate that in old draining areas calcium and phosphorus are often too low in comparison to nitrogen.
The PDF includes a summary in English.
The possibilities of using a pot method to determine the need for fertilizer application were studied. Seedlings of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) were grown in peat samples that had cylindrical shape with a diameter of 25 cm and height of 35 cm. The samples represented three different peatland types, and were fertilized with two levels of phosphorus, potash and nitrogen. Two transplants were planted per pot. The development of the seedlings was followed for three years.
Phosphorus seemed to be of greatest importance for the growth of the seedlings, but nitrogen was also required in the poorest peatland type. Potash did not give statistically significant results. NPK application gave the best response. The usability of the method was studied by following the development of the roots. It seemed that the diameter of the pots was too small and restricted the growth of the root systems.
The PDF includes a summary in English.
The paper describes the results obtained from an experiment of fertilization of drained treeless peatlands in connection of planting in three sites in Central Finland. Scots pine (Pinus sylvestris L.) seedlings 2+0 was used. The fertilizer (Y-fertilizer for peat soils, 14% N, 18% P2O5, 10% K2O) was applied in rates of 0, 20, 40 and 80 g/transplant. The fertilizer was strewn either around the plant within a circular patch of 20 cm in diameter, in a ring with a radius of 10 cm and in a ring with a radius of 20 cm. The seedlings were measured two and five years after planting.
The greater the quantity of fertilizer applied and the closer it was applied to the plant the higher was the mortality of transplants. Fertilization increased the mortality during the first two growing seasons after application. Later, however, the mortality decreased to a similar level irrespective the way the fertilizer was applied. In the beginning of the second growing season the fertilized plants showed considerably better height growth than the control plants. The smallest quantity of fertilizer applied produced almost full increase in growth. The pattern of application of the fertilizer had little effect on the growth.
It was concluded that a use of small amounts of fertilizer can be recommended in connection with planting and that it should not be applied very near the seedlings.
The PDF includes a summary in English.
This paper presents the results of a contest performed on behalf of the Finnish bank Kansallis-Osake-Pankki and the Central Forestry Board Tapio on growing trees on peatlands. Over 5,000 sample plots were established on drained peatlands in various parts of Finland. The aim was to achieve a best possible growth of seedling stands on peatland. The factors influencing the growth of 85 best Scots pine (Pinus sylvestris L.) and 60 best Norway spruce (Picea abies (L.) H.Karst.) sample plots were studied.
The height growth of the seedling stands decreased towards the north. Fertilization seemed not to decrease the regional differences; rather on the contrary. On the other hand, fertilization increased height growth, but evidently so that the increase obtained was greater in the southern than in the northern parts of the country. Light fertilization (50 kg/ha of K2O and 60 kg/ha of O2P5) caused a clear increase in height growth while heavy fertilization (100 g/ha of K2O and 120 kg/ha of O2P5), had same effect but to much greater extent than the former. Spruce seedling stands in particular benefitted of the heavy fertilization.
Fertilization did not eliminate the original differences in the quality of the sites in question, but these could still be seen in the height growth after fertilization. The effect of drain spacing on the height growth was not very clear. In dense seedling stands (800 seedlings/ha) the height growth of the dominant seedlings was greater than that obtained in stands of lower density. Hold-overs caused a decrease in the growth of the seedling stands.
The PDF includes a summary in English.
The present paper is a preliminary report of a project designed to determine the order of profitability of various forest improvement measures – seeding and planting, drainage, and fertilization – in various types of stands and in different parts of the country on drained peatlands. Sample plot data on the effect of draining on increment was derived from areas drained 28– 36 years ago. The study was carried out in the southern half of Finland.
The observations on increment changes are based on two measurements of the sample stands 12 years apart. Supplementary calculations indicate that the stands on drained peatland, depending on site quality and tree species, have either continued to grow like mineral-soil sites of similar fertility or have somewhat increased their growth rate.
The effect of draining intensity was studied using strip measurements. It was found that both the total amount of wood produced (current stand + cutting removal + natural removal) and the current annual volume increment for the 5-year period systematically decrease as the ditch interval increases. The decrease is, however, relatively slight. In Eriophorum vaginatum pine swamps, the total amount of wood produced and the increment show a decrease of ca. 20% with an increase in ditch interval from 20 to 60 metres. In other sites, the decrease is ca. 5-10%
It can be concluded that if the increase in ditch interval do not result in considerably poorer timber assortment distributions than indicates by stand production and increment, it is profitable to pan for a relatively large ditch interval and a slightly smaller than maximum wood production. Supplementary data and check calculations may cause some changes in these preliminary results.
The PDF includes a summary in English.
Due to mechanization of draining of peatlands, also open peatlands have been included in the draining projects due to technical reasons. Some research has been published on afforestation of open drained peatlands, but there is yet no experiments that reaches the entire development of the stands. The purpose of this paper is to discuss the possibility of extending the planting season of Scots pine (Pinus sylvestris L.) over the entire growing season in drained peatlands, where the water condition of the site is probably not the factor limiting forest development. An open low-sedge swamps in Southern Finland were planted in early summer and two weeks in midsummer in 1967.
In the light of the results, planting Scots pine would seem possible in drained peatlands throughout the growing season. However, plants may suffer considerably from lifting for the plantation in August. The success of planting at the turn of September and October is also uncertain. The nursery must be situated close to the areas to be planted, since the transportation and handling of plants during the growing season must be carried out with extreme care. The seasonality of planting work could be decreased by extending the planting season. In the future, several transplant storing methods should be tried out in connection with similar planting-time experiments.
The PDF includes a summary in English.
The many unsolved questions concerning fertilization makes it difficult to forecast accurately its biological and economic consequences. Some of the problems are discussed in this paper. The most common types of forests in Sweden, Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) stands on well-drained mineral soil, respond strongly to nitrogenous fertilizers, but the effect of phosphate, potash or lime is small or nil, at least within 5–10 years after application. The response of nitrogen lasts 4–5 years in pine and somewhat more in spruce.
Drained peatlands usually respond to mineral fertilization, but the improvement brought about by a PK application depends, inter alia, on the nitrogen content of the peat. Peatlands with a peat low in nitrogen need NPK fertilization. For deep peatlands, a moderate or high nitrogen content, a single PK application improves growth conditions for a very long time. Experience of fertilizing shallow peatlands and poorly-drained mineral soil is very limited, but it seems easy to get a growth response either with nitrogen alone or with NPK.
The results of fertilization at the time of planting have not, as a rule, been very good in Sweden. An exception is the afforestation of abandoned fields on drained deep peat, where PK fertilizer around the plant seems to be essential for both survival and growth.
Silva Fennica issue 46 includes presentations held in professional development courses, arranged for foresters working in public administration in 1937. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service.
This presentation describes inspection of forest regeneration of mineral soil forest types and drained peatlands, and inspection of ditches.
Silva Fennica issue 46 includes presentations held in professional development courses, arranged for foresters working in public administration in 1937. The presentations focus on practical issues in forest management and administration, especially in regional level. The education was arranged by Forest Service.
This presentation describes afforestation of drained peatlands.
Draining of peatlands requires careful planning because of its costs. Only peatlands that have sufficient growth capacity in future should be drained. The future growth capacity can be estimated based on peatland type, the botanical composition of the peat layers and the quality of the surface peat layer of the swamp.
Also the draining methods should be cost effective. To keep the amount of drains low, the drain network and drain lines should be planned so that each drain has high drain effectivity. Most of the peatlands drained in Finland have been forested. Especially the young trees regain soon their growth when the peat begins to dry. It is recommended to leave the young trees, but most profitable to harvest the older forests in the drained area. Practical experiences have shown that even drained open peatlands can be naturally regenerated. Natural regeneration is almost guaranteed to succeed on peatlands, which have seed trees.
A summary in Finnish is included in the PDF.
The present investigation revealed that the influence of a forest cover on the water economy of the soil is very great in Finland. Cutting of the forest gave cause to a rise of the ground water table, which, when clear-cutting is in question, reached a magnitude of 20–40 cm. The water supplies of the soil increased 40–60 mm. In the winter, too, the ground water remaind at a lower level in the forest than in opening, however, the difference is rather small. Thinnings had same kind of effect as clear-cuttings, but the influence of even heavy thinnings was still relatively small.
The water supplies of the soil after felling decreased mainly due to the decrease in the interception in the canopy. When the water table is at the same level in the forest and in opening, evapotranspiration might be greater in the forest than in openings. However, when the water level is during the growing season considerably lower in the forest than in an opening, the evapotranspiration is strongly decreased in the forest, which means that more water is evaporated and transpirated from the opening than from the forest. Because the water table is at a higher level in the opening than in the forest, runoff from clear-cut areas has exceeded that from the forest. This means that the influence of felling on the water economy of the soil is actually even greater than indicated in this work.
The results mean that the influence of the forest cover makes up that of drainage. This affects the need for maintenance of ditches. On the other hand, the final cutting will rise the ground water strongly.
The PDF includes a summary in English.
The objective of this project was to determine the amount of gas exchange in peat samples collected from several swamps, using the Warburg method in the laboratory measurements. Special attention was directed on the influence of the lowering of the ground water level through drainage, on oxidation-reduction conditions in the samples from both forested and treeless peatlands, by measuring oxygen uptake and CO2 release. The biological activity in situ was determined by the cellulose decomposition rate in the sample plots. The six areas examined were both in drained peatlands and peatlands in natural condition.
The results show that in the sample plots in open swamps there was no consistent differences in the CO2 release rate in peat samples taken from different depths. However, in the sample plots on forested swamps rapid decrease is seen with increasing depth. The decreased biological activity of peat is caused by the oxidation-reduction conditions. The CO2 release rate may also be due to the respiration of tree roots, which are very shallow in peatlands.
The rate of in situ cellulose decomposition experiment and CO2 release indicated by the Warburg measurements appear to be correlated. The results indicate improved conditions for cellulose-decomposing microbes after draining. It is also possible that the biological activity of peat after draining increases to a considerable depth until the decrease of easily decomposable substances limit the activity in an old drainage area. The cellulose decomposition rate would still increase as the oxidation-reduction conditions improve.
The aim of this work was to study, on the basis of material published earlier (Heikurainen 1959), the effect of temperature on stand increment, to find out if there is any differences between Norway spruce (Picea abies (L.) H. Karst.) and Scots pine (Pinus sylvestris L.), and to study the effect of site quality on the relationship between stand increment and temperature. The calculations were based on data collected from 396 sample plots on drained peatlands in different parts of Finland.
There seemed to be no differences due to tree species or site quality in the relative amounts of growth under different climatic conditions. Thus, differences in the absolute growth between poor and fertile sites are noticeably smaller in Northern Finland than in Southern Finland. The author suggests that this implies that the lasting maximal increase of growth which can be produced, for instance, by using soil-improving agents must be less in unfavourable conditions than in favourable.
The present study deals with correlation between level of ground water table and water content of peat in peatlands drained for forestry. The results have been obtained partly from field studies and partly from experiments in the laboratory.
Both the field and laboratory experiments proved that a close rectilinear correlation exists between the level of the ground water table and the water content of surface peat. A given change in the level of the ground water table corresponds to a smaller change in the water content the deeper the peat layer examined is situated. The change in the water content in the surface layer (0–20 cm) in the cases studied was of such a magnitude that a change of 10 cm in the level of the ground water table corresponded to a change of about 5 volume per cent. In deeper layers the change was smaller. The state of equilibrium regulating the water content of the peat is relatively stable. It is possible that the so-called optimum drainage of a peatland for each tree species can be theoretically determined on the basis of the correlation between the water content of peat and the level of ground water table.
The method used in the study, the repeated weighing of peat samples in their original place, has proved to be very useful and decisively better than the method based on one-time samples. The experiment also indicate that the correlation can be determined with laboratory experiments.
Lowering of the ground water table is caused by decrease in the amount of water because of evapotranspiration. Evapotranspiration of a forest is determined by converting a lowering of the ground water table into a decrease in the amount of water. This paper describes a method to determine the transpiration of tree stands and ground vegetation as well as total evaporation on a Finnish drained peatland, which ground water table was relatively high, by measuring the level of the ground water table.
It was shown that in drained peatlands with relatively high ground water level, the ground water table fell during the day between about 9 a.m. and 6 p.m., and remain at approximately same level during rest of the day. The fall of ground water table was caused by transpiration of the trees and ground vegetation, and could be over 20 mm. Thus, measuring the daily lowering of ground water table can be used to estimate transpiration of the trees. When the method is applied to measuring the total evaporation of longer periods of time, also rainfall, interception, stand rainfall and stemflow have to be measured. The method is applicable only on sites with relatively high ground water level.
The PDF includes a summary in Finnish.
The determination of biologically most favourable strip width in peatlands to be drained has been hindered by lack of information of the temperature conditions in the surface peat and in the air close to the ground after drainage of different intensities. Temperature measurements were carried out on peatlands drained to different degrees in Central Finland in the summers of 1960 and 1961. The ground water level in the measuring points, and the strip width served as the criterion for differences in water condition.
When the drainage became more intensive, the temperature of the surface peat decreased. However, temperature differences were small, and discernible only when the differences of water conditions were considerable. The effect of strip condition to temperature seems to be of similar nature than the ground water level. Even in extreme cases temperature differences due to different drainage intensity were relatively small, and seldom exceeded 2°C.
Differences in temperature dependent on the growing stock may be as high as 10°C. Thus, the temperature of the surface peat may be dependent on factors more important than temperature differences caused by aspects of drainage. A well-drained peatland is coldest at the beginning of a growing season compared with poorly drained peatland. The temperature differences increase deeper in the peat. This is caused by the better heat conductivity of the moist peat. Also, daily variations in temperature in the surface peat are large in moist peat.
The PDF includes a summary in English.
The objective of the investigation was to determine the differences between faultless timber grown on a peatland before and after draining, in respect of compressive strength to the grain, volume weight, and shrinkage. In addition, the influence of the boundary zone between the close-ringed wood formed before draining and the wide-ringed wood produced after draining on strength of the timber was studied. The material consisted of 15 sample trees of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.), white birch (Betula pubescens Ehrh.) and silver birch (B. Pendula Roth).
The volume weight of wood of the tree species in ascending order is; spruce, pine, white birch, silver birch. The volume weight of Scots pine seems to decrease from the butt end upwards, while no trend was revealed for spruce. In the coniferous trees, the wide-ringed wood formed subsequent to draining was slightly lighter than the close-ringed wood produced prior draining. No distinct trend was seen in the birch species. The volume weight of pine and spruce increased with decreasing width of the growth rings up to a certain limit, after which the conditions inverted.
The compressive strength of the different kinds of wood seems to increase from the butt end upwards, but after height of two meters it begins to decrease considerably. In birch, this point of inversion is in somewhat greater height. In spruce timber, the compressive strength parallel to the grain is lowest for wood which contains exclusively wide-ringed wood formed after draining. The boundary zone between the woods formed before and after draining is very distinguishable, but has no remarkable influence on the compressive strength parallel to the grain. Shrinkage of close-ringed wood is higher in all three principal directions than that of wide-ringed wood. This can be explained by the variations in volume weight and fibrillar orientation of the tracheid walls.
The PDF includes a summary in English.
Prescribed burning has been used to treat the mineral soil sites, but the method has been little used in drained peatlands. The course and methods of prescribed burning in drained peatlands, and the effect of burning on sprouting of broadleaved trees, growth of ground vegetation and regeneration of Scots pine (Pinus sylvestris L.) by sowing was studied in drained pine bogs in Southern Finland. The top layer of the peat was mostly Sphagnum peat. The material included a prescribed burned 12 ha drained peatland area in Tuomarniemi district, in addition to which ten previously burned areas were investigated.
The burning had succeeded mostly well, but also unsuccessfully burned sites were observed. Estinguishing of the fire was easy, and no peat fires occurred. The fire burned only the logging residue, ground vegetation and the dry top layer of the peat. The roots of brushwood and grasses survived in the peat that insulated the top layer from the heat. For instance, the abundance of cloudberry (Rubus chamaemorus L.) increased after the fire. Similarly, burning did not affect sprouting of the stumps of downy birch (Betula pubescens Ehrh.). It cannot thus be used as a method to restrict the growth of coppice in regenerated areas. The seeds of Scots pine germinated well on the burned surface. 46% of the seeds developed to seedlings on sphagnum-shrub vegetation and 16% in feathermoss-shrub vegetation.
The PDF includes a summary in German.
Draining transforms root systems of trees growing in peatlands towards the ones growing on mineral soil. However, even after efficient draining the root systems differ from the root systems of trees growing on mineral soil. This investigation concentrates on root systems of forests of similar mire types growing in similar draining conditions but having different tree species compositions. The peatland, situated in Pieksämäki in Southern Finland, was drained in 1937. Sample plots, measured in 1956, consisted of mixed forest of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L. Karst.) and birch (Betula sp.) in different compositions, and were in natural condition.
The sedge pine bog studied in this investigation was shown to have larger total amount of roots and mycorrhiza than in previously studied dwarf shrub pine bogs. This reflects better growth conditions of the better site. The depth of root system was, however, similar. Root systems of birch were deeper than those of the coniferous tree species. Differences between Scots pine and Norway spruce were small. Corresponding differences between the species were found in the density and total number of mycorrhizas. The abundance of mycorrhizas in the roots of birch increased in deeper layers of peat, but decreased especially in spruce roots. In earlier studies the abundance of mycorrhizas decreased in the roots growing in deeper layers in pure Scots pine stands, but no such variation was seen in this study. The result suggest that the deep root system of birch may affect also the root systems of the coniferous trees. On the other hand, birch roots can have advantage over the coniferous trees.
The PDF includes a summary in German.
According to studies following the development of vegetation of drained peatlands, it seems that they have transformed to a relatively stable plant communities during the succession. In earlier studies it was assumed that after drainage a mire type would develop to a corresponding forest site. This investigation studies what kinds of plant communities are formed during succession of different mire types on peatlands drained for forestry in the southern half of Finland. Understorey vegetation was studied in 18 sample plots established by Forest Research Institute on drained peatlands. In addition, sample plots were studied on peatlands in natural state.
The results suggest that understorey vegetation on peatlands drained for forestry have developed into plant communities, the most advanced of which are the so-called dry plant communities. They represent transformed site types, which are the following: drained peatlands with upland herb-rich vegetation, drained peatlands with upland grass-herb vegetation, drained peatlands with upland Myrtillus site type vegetation, drained peatlands with upland Vaccinium site type vegetation, and drained peatlands with upland Calluna site type vegetation. Drained peatlands with upland Cladonia site type vegetation seem to be a temporary type caused by incomplete drainage. The transition between Myrtillus and Vaccinium dominated dry plant communities is not clear, but especially the pure Vaccinium vitis-ideae communities justify its place as an independent plant community. The dry drwarf shrub plant communities are also stable.
The PDF includes a summary in German.
The root system of a Scots pine (Pinus sylvestris L.) growing on a peatland is restricted, according to earlier studies, on the top layers of the peat above the groundwater level. Drainage of the peatland affects growth of the root system. This investigation aims at studying the root systems on the point of view of draining of peatlands. The structure and distribution, and the growth of mycorrhiza in Scots pine roots in pine swamps varying from natural state to well drained state is studied.
The study shows that Scots pine on pine swamps has more extensive root system than has earlier assumed, it is common to find 1,000 m of roots in one cubic meter in a healthy stand. The trees reach this density of roots early on. In a drained peatland, the total root length is markedly higher than in a similar stand in natural state. The root systems proved to be very shallow. Even in a well-drained site the roots did not grow deeper than 20 cm. 70% of all roots were found in the upper 5 cm layer of peat, and 90% in the upper 10 cm layer. Root systems were deeper in drained peatlands, but the difference was small. In a site in natural state the average depth of the roots was 4 cm, and in a drained site 5 cm. About 85% of the roots were under 1 mm of diameter. Short roots were found only in the fine roots. Draining increases strongly the number of short roots. Mycorrhizas of the types A, B, C and D as well as pseudomychorrizas were found in the pine roots.
The PDF includes a summary in German.
Pine swamps are easily regenerated by natural regeneration of Scots pine (Pinus sylvestris L.). Usually seeding felling is used, but also strip system or clear cutting and regeneration along stand edge has been suggested. This article discusses the regeneration by clear cutting and sparing the existing undergrowth. The article focuses on pine swamps to be drained and the ones in natural state.
Pine swamps in natural state usually have plenty of trees of smaller diameter classes, that can be trusted to form the future tree generation after the felling. This shortens the rotation by 20-30 years. The undergrowth has been shown to recover quickly. The method suits for regeneration of drained peatlands but could fit also for regeneration of pine swamps in natural state.
The seedlings in the pine swamps are mainly 1-5 years old, and the stock is changing. It seems that larger trees produce a wider selection of age groups, but the seedlings survive longer under smaller mother trees. Part of the younger generations of seedlings seem to be destroyed when the peatland is drained. Further studies are needed to investigate how the draining and felling are to be performed to spare the young seedlings.
The Acta Forestalia Fennica issue 61 was published in honour of professor Eino Saari’s 60th birthday.
The PDF includes a summary in German.
The aim of the investigation was to study natural regeneration of Norway spruce (Picea abies (L.) Karst.) in drained peatlands and frost injuries in seedlings, and to compare microclimates of the regeneration areas. The experiments included peatlands in Satakunta in Western Finland. Restocking of the areas with seedlings and their survival was followed in 1935-40 at sample plots that were mainly 1 are large.
Susceptibility to freezing was shown to be dependent on the stage of development of the shoots. Shoots that have just begun to grow contain little water, and withstand better freezing temperatures than shoots in later stages of growth. Damages to the seedlings were observed when the temperatures decreased to -2.8–-4.3 °C. The most severe damage to a seedling was caused by the death of the leading shoot by spring frost.
Norway spruce regenerates easily on moist peatlands, but peatlands with dry surface tend to have little or no seedlings. The species regenerated better in marshy sites than correspondingly fertile mineral soil sites. However, it needs shelter to avoid frost damage. On clear cut spruce swamp the undergrowth spruce seedlings that were left in the site got severe frost damage. If the site had birch (Betula sp.) coppice or undergrowth, spruce seedlings survived in their shelter depending on the height and density of the birch trees. To be effective, the protective forest should have relatively even crown cover. Young spruce seedlings could grow well even under relatively dense birch stand.
The PDF includes a summary in German.
Only about 24,000 hectares of peatlands have been drained in the state lands by the 1921. The aim of this study was to define how much the growth of the trees in the drained peatland revives. Sample plots were measured in previously drained peatlands that had sufficient Scots pine (Pinus sylvestris L.) tree stand. A stem analysis was performed to one of the sample trees. The evenness of the stands was dependent on how evenly the peatlands had dried when the stand was regenerated. Thus, the sample stands were not always fully stocked. However, they had capacity to develop towards evenly structured forests as the peatlands continued to dry further. The diameter and height growth of the dried peatlands have corresponded the similar stands in mineral soil sites. In trees that have grown stunted in the peatlands, the diameter growth seems to increase faster than the height growth. The volume growth is slightly smaller than in the similar mineral soil sites due to less favorable stem form. After the draining, the roots of the trees continued to grow from the old branches of root, but start then to form new roots. When the ground water level drops, the root layer grows deeper.
The PDF includes a summary in German.
The first three-year effects of PK(MgB) and NPK(MgB) fertilization on the dry mass accumulation and nutrient cycling were studied in a Scots pine (Pinus sylvestris L.) stand growing on a drained low-shrub pine bog in Eastern Finland. The total dry mass of the tree stand before fertilization was 78 tn/ha, of which the above-ground compartments accounted for 69%. The annual above-ground dry mass production was 6.3 tn/ha, 51% of it accumulating in the tree stand.
The study period was too short for detecting any fertilization response in the stems. The total dry mass accumulation was not affected, because the increase in foliar and cone dry masses after both fertilization treatments, and that of the living branches after NPK fertilization, were compensated by the decrease in the dry mass of dead branches.
The nutrients studied accounted for 392 kg/ha (0.49%) of the total dry mass of the tree stand before fertilization. The amounts were as follows; N 173 kg/ha (44%), Ca 90 kg (23%), K 58 kg/ha (15%). The rest (18%) consisted of P, Mg, S and micronutrients combined. The unfertilized trees took up the following amounts of nutrients of the soil: N 15.6, Ca 12.8, K 4.1, P 1.3, MG 1.7, and S and Mn 1.5 kg/ha. The uptake of Fe and Zn was 510 and 130 g/ha and that of B and Cu less than 100 g/ha. More than 50% of the nutrient uptake, except for that of K and Fe, was released in litterfall. The results indicated very efficient cycling of K, Mn and B between the soil and trees.
The fertilized stands accumulated more N, P, K and B than the unfertilized ones during the tree-year study period. The increased accumulation corresponded to 35% (52 kg/ha) of the N applied on the NPK fertilized plots, 10% of the P, 25% of the K and 10% of the B on the PK and NPK fertilized plots. The increased amount of B released in litterfall after fertilization was equivalent to 4% of the applied B. Fertilization inhibited the uptake of Mn and Ca.
The PDF includes a summary in Finnish.
Multivariate methods are used to classify pine mires on the basis of edaphic properties into fertility groups in order to estimate the effect of fertilization in relation to site fertility. The data is based on two field inventories of NPK fertilization experiment in which 2,624 sample trees on 164 sample plots from 19 experimental fields were measured on Scots pine (Pinus sylvestris L.) dominated stands. The edaphic properties (total contents of nutrients and related properties) are based on 1,350 volumetric sub-samples of fertilized and non-fertilized control plots.
In a DECORANA ordination, based on standardised volumetric soil variables N-P and acid-base gradients jointly describing trophic status were distinguished. Mainly on the basis of these two gradients a TWINSPAN analysis divided the material into five edaphic groups. To independently allocate sample plots into fertility groups, discriminating multiple regressions were formed using the TS edaphic groups as class variable.
The effect of N, P, K, NP, NK, PK, and NPK treatments on tree growth was estimated on the basis of change in relative basal area increment during two growth periods. During five-year period immediately after fertilization N and P treatments evoked the strongest increase in growth. On the nutrient poor sites, the effect was almost double that on the fertile sites. The effect of N was short lasting while the P treatment still affected growth after 5–11 years. Although K treatment had little influence on tree growth needle samples collected 11 years after fertilization indicated increased K uptake on fertilized plots.
Generally, the effect of fertilization on absolute stand volume growth was small. During the 11-year study period the total increase in growth gained with NPK was some 3–4 m3/ha. Despite strong relative response of individual sample trees, due to low stand volume fertilization (and drainage) had practically no effect on volume growth on the sites of lowest fertility.
The PDF includes a summary in Finnish.
Soil respiration readings are reported for three ameliorated peatland sites of different types, covering a period of four years, during which the sites were drained and treated with various fertilizers. Respiration is shown to increase exponentially with temperature, varying mostly in the range 100–500 mg CO2 m-2 h-1. The changes in soil respiration followed those in surface temperature with a time-lag of approximately 3–3.5 hours. At one site, where the groundwater table dropped by about 0.5 m after ditching, soil respiration increased 2.5-fold within a few weeks, whereas at the other two sites both the fall in the groundwater table and the resultant changes in soil respiration were small.
The fertilizers tested were slow-dissolving PK, fast-dissolving PK, wood ash, slow-dissolving PK + urea, slow-dissolving PK + Nitroform (urea formaldehyde) and slow-dissolving PK + urea + a micro-element mixture. Application of fast-dissolving PK + urea led to a rapid increase in soil respiration at the site poorest in nutrients, and slow-dissolving PK to a slow increase in respiration. The greatest, steady increase of all was achieved by treatment with ash. At the sites with a higher natural nutrient content the application of fertilizers usually led to a decline in soil respiration lasting 1–2 years, after which the initial level was normally regained. Treatment with micro-elements caused an initial fall in soil respiration values in all three biotopes, followed by a pronounced increase.
The PDF includes a summary in Finnish.
An attempt was made in this study to determine which nutrients and in what amounts should be used in the fertilization of Scots pine (Pinus sylvestris L.) seedling stands on nutrient-poor open bogs in order to obtain optimum seedling growth and to minimize the risk of elk damage.
The most important nutrient to improve seedling growth in the experiments was phosphorus. Already rather small amounts produced a significant effect although the effect of higher dosages seemed to be longer lasting. After fertilization also nitrogen gave significant increase in growth. The number of seedlings damaged by elk increased the most on N-fertilized plots. Also, phosphorus increased the occurrence of elk damage, but effect seemed to be related to the better growth and more suitable size of P-fertilized seedlings. The effect of potassium on seedling growth and on occurrence of elk damage was negligible.
The PDF includes a summary in English.
The paper presents some preliminary results of a 10-year-old study the purpose of which is to determine the effect of simultaneous variations in the intensity of drainage and fertilization on the development of planted and natural seedlings on peatlands under various climatic conditions. The development of the Scots pine (Pinus sylvestris L.) seedlings appeared to be better the more intensive the degree of drainage and fertilization used. The increase in the temperature sum had a positive effect on the development of pine seedlings and decreased the mortality rate.
The best growth result was obtained with a 10 m ditch spacing and strong fertilization. As it is difficult to decrease the 10 m ditch spacing for cost reasons, it can be concluded that on such oligotrophic peatlands as were used in this experiment, only an average growth level in the seedling stands can be reached even with the most efficient forest improvement measures. Broadcast fertilization used in the experiment, at least in large doses, increases seedling mortality, as well as the coverage of the ground vegetation, particularly that of cottongrass and fireweed, and also the shrub height, thus increasing competition. It cannot be recommended for afforestation, and today spot fertilization is used. According to this experiment natural seedlings seem once they have recovered after the first years, to grow better than the planted seedlings. This was true especially in the north and in areas, where drainage was not efficient. The height and height growth of the seedlings were to a large extent dependent on the temperature sum.
The PDF includes a summary in English.
The study deals with the development during the 1950s and 1960s of a stand growing on peatlands which had been drained in the 1930s. The following characters were determined by measurements: the volume of the growing stock, the volume increment, the relative increment, the increment percent and the increment curves. Moreover, the possible changes taking place in the difference between tree growth along the ditches and in the middle of the strip between ditches were studied. In addition, the regional variation in increment was studied; this question was studied as the regression between the relative growth and the temperature sum. The results were compared with other Finnish investigations into the regional variation of increment.
The volumes of the growing stock had increased during the course of twelve years by 70–10 m3 /ha depending on the site type and climatic zone concerned. The relative increment had dropped in each case studied. As a matter of fact, this is only to be expected because the volumes had increased and the absolute growth had remained more or less unchanged. The development of the increment percent was compared with mineral soil stands in the case of Southern Finland, both uncut stands and stands treated with cuttings. According to the results obtained, the development of the increment percent was better in the present material than in uncut forests, but in some cases it did not reach the level of tended stands. The revival of the tree crop after draining takes place at different rates in the vicinity of and, on the other hand, at greater distances from the ditches and that this relationship is dependent on the fertility of the site.
The PDF includes a summary in English.
The paper is based on data collected from 411 sample plots in various parts of Finland situated on peatlands which had been drained in the 1930's. The purpose of the study was to determine the influence of ditch spacing on the volume, increment and structure of timber crops growing on drained peatlands. The ditches had been spaced 70–90 m apart, and the sample plots were placed strip wise along the ditches.
The results of the study indicate that the influence of ditch spacing on both the total volume and the volume increment is greater, the poorer the site. On the other hand, the influence of ditch spacing on the structure of the stand as described by means of the mean diameter as weighted by the basal area, seems to be of similar magnitude in all the sites covered by the study.
Generally speaking, the influence of ditch spacing on stand development is surprisingly small, even in extreme cases. The total volume and the increment of the growing stock decrease by about 20% when the ditch spacing increases from 20 to 60 m, the corresponding decrease in the mean diameter having a magnitude of 10%. This was interpreted to be due to the fact that the main part of the superior growth along the margin of the ditch is spent in compensating for the space lost in the area taken up by the ditches.
On the basis of the results obtained it was concluded that the best solution in forest drainage from the economic viewpoint is to employ relatively wide ditch spacings, which leads to a rate of stand development somewhat below the potential.
The PDF includes a summary in Finnish.
In 1965 and 1966 a total of 25 experiments were laid out in various parts of Finland in order to find out the effect of simultaneous variation in the intensity of drainage and fertilization on the development of plantations and natural seedling stands of Scots pine (Pinus sylvestris L.) growing on pine swamps. The fertilizer used was Y fertilizer for peat soils, a fertilizer mixture containing 14 % N, 18 % P2O5 and 10 % K2O. It was applied in rates of 500, 1,000 and 1,500 kg/ha. The ditch spacings studied were 10, 20 and 30 m. The present paper is a preliminary report on a series of studies, the experiments will be observation for a total of 15–20 years.
Mortality of the planted seedlings was found to be the higher after the first growing season, the larger the quantity of fertilizer that had been applied. Fertilizing caused an increase in seedling mortality even after the first growing season following application. At the end of the fifth growing season the height of both natural and planted seedlings is the greater, the larger the quantity of fertilizer that has been applied. Analysis of the height growth of the seedlings showed that larger quantities of fertilizer did not increase growth in the same proportion. The occurrence of growth disturbances is the greater, the more fertilizer has been applied.
Fertilization also changed the composition of ground vegetation. The in the beginning of the experiment birch (Betula sp.) was absent in the area, but was found in the stands the greater abundance the higher application of the fertilizer.
From the viewpoint of growth of the seedlings the best results were obtained with the greatest intensity of fertilization and the narrowest ditch spacing used in the study. The results also show that strong fertilization and a high degree of drainage intensity are not capable of bringing about any particularly good growth on peatlands which originally are relatively poor in nutrients. The growth values now obtained equal only one third of those obtained on peat soils of greater fertility.
The PDF includes a summary in English.
The present study deals with the ground water table in the soil of drained peatlands and with the technique used for its determination. The terms depth and height of the ground water table are defined in the paper. Because of the fact that the surface of peatlands moves under the influence of a great number of different factors, the depth of the ground water table and the height of the ground water table are not parallel concepts. The present paper concentrates on the depth of the ground water table.
Observations on the depth of the ground water table in the sample plots in 1966-67 and 1968-69 show that the maximum of the late summer usually exceeds that of the early spring, and that the minimum occurring in the period of snow melting is more clearly discernible than that of the fall. Great differences occur in the depths of the ground water table in different sample plots. These differences are due to the specific properties of the peat of different peat layers, which are expressed in terms of the ground water coefficient. The duration of the depth of the ground water table proved to be a useful way to express the long-term changes.
Four kinds of short-term fluctuations in the ground water table were observed: a) the ground water table falls during the night hours, although the rate of falling is slower than in daytime, b) the ground water table rests at the same depth during the night, whereas during the day it clearly falls, c) the descent of the ground water table is similar throughout the whole 24-hour period, d) the ground water table rises during the night hours and falls in daytime. Occurrence of these types are discussed. Typical short-term fluctuation is the fall due to evaporation in the daytime.
The third part of the paper discusses the techniques used to measure the changes in ground water table.
The PDF includes a summary in English.
The aim of this study was to assess the effect of cutting of different intensities on the hydrology of drained peatland. The study concerned with measuring changes in the ground water level, throughfall, and snow cover, and specially runoff. This study focused on the phenomena that occur during the growing season. Seven sample plots were measured in an area in Central Finland which had been drained about 50 years earlier and had Scots pine (Pinus sylvestris L.) stand of uniform age.
To survey the hydrological effects of cuttings, 20%, 40% and 60% of the stand volume was removed in thinnings. In addition, one sample plot was clear-cut. During the first two years after cutting the interception diminished, and throughfall increased by 7% for the 20% thinning, by 8% for the 40% thinning and by 12% for the 60% thinning. Clear cutting increased the throughfall by 29%. The thinnings increased the depth of the snow cover the more the heavier the thinning.
Even the lightest thinning raised the ground water table, but the difference between 20% and 40% thinning was not marked. Cuttings increased runoff the greater the heavier the cutting. The hydrological changes of fellings were detrimental for the site. However, there was a marked change only between the 40% and 60% thinnings. Fertilization had a favourable effect on the hydrology of the peatland by increasing the depth of ground water table, and decreasing the throughfall.
The PDF includes a summary in Finnish.
The aim of the present study was to collect information on biological activity in the topmost 30 cm peat layer in certain natural and drained peatlands of different fertility, covered by different stands.
The results showed that if the ground water table in peatland sites is located in the immediate vicinity of the ground surface (about 5-10 cm in depth), conditions are reducing, and often even anaerobic, up to the ground surface. By means of drainage the aerobic limit can be dropped to a greater depth. This will occur because of the aerobic limit closely follows the fluctuation of the ground water table.
Although, by means of drainage, the aerobic limit can be lowered to more than 50 cm in depth, rains are followed by a rise of a ground water table and the aerobic limit; hereby a change from oxidizing to reducing conditions takes place. Only by keeping the ground water table and the aerobic limit constantly at the depth of more than 50 cm is it possible to obtain oxidizing conditions in the topmost 20-30 cm peat layer. The anaerobic conditions prevent the tree roots penetrating deeper in the peat.
In reducing conditions cellulose decomposition as well as carbon dioxide release from peat samples is slower than in oxidizing conditions. The rate of cellulose decomposition, however, is essentially dependent on the nitrogen content and the acidity of the peat.
The present study is an attempt to establish the response to drainage of Norway spruce (Picea abies (L.) H. Karst.) and Scots pine (Pinus sylvestris L.) on some peatland sites, and to determine the revival of the trees and continuance of the growth after drainage. Growth of trees in four types of peatland types of drained peatlands drained between 1908-1918 were studied, and the results were compared with corresponding mineral soil sites
In pine the response to drainage was faster than in spruce in all age classes. Even the oldest groups of trees showed as good growth as trees of the same size growing on mineral soils. The rapidity of revival and the radial growth maximum are affected by the age of the tree at the time of ditching and the site fertility. The size of the trees, too, is of importance for the magnitude of post-drainage radial growth; the influence is similar in different sites. The basal area growth of trees growing on peat usually showed an unbroken increase during the entire post-drainage period. Neither the height growth indicates a decline in growth over time.
In the light of the results from sample tree analysis, it seems that tree growth gradually rises even after the revival period in peatlands originally covered by forest. The are some errors in the comparisons made, but it can be observed that aging of drainage areas as such does not mean that growth conditions become poorer.
The PDF includes a summary in English.
The aim of this study was to develop individual-tree diameter and height growth models for Scots pine, Norway spruce, and pubescent birch growing in drained peatlands in Finland. Trees growing in peatland sites have growth patterns that deviate from that of trees growing in mineral soil sites. Five-year growth was explained by tree diameter, different tree and stand level competition measures, management operations and site characteristics. The drainage status of the site was influencing growth directly or in interaction with other variables. Site quality had a direct impact but was also commonly related to current site drainage status (need for ditch maintenance). Recent thinning increased growth of all species and former PK fertilization increased growth of pine and birch. Temperature sum was a significant predictor in all models and altitude for spruce and birch. The data were a subsample of the 7th National Forest Inventory (NFI) sample plots representing northern and southern Finland and followed by repeated measurements for 15–20 yrs. Growth levels predicted by the models were calibrated using NFI11 data to remove bias originating from the sample of the modelling data. The mixed linear models technique was used in model estimation. The models will be incorporated into the MOTTI stand simulator to replace the current peatlands growth models.
The main aim of the current study was to estimate the annual net nitrogen mineralization (NNM) flux in stands of different tree species growing on drained peatlands, as well as to clarify the effect of tree species, soil properties and litter on annual NNM dynamics. Three study sites were set up in May 2014: a downy birch (Betula pubescens Ehrh.) stand and a Norway spruce (Picea abies (L.) Karst.) stand in Oxalis full-drained swamp (ODS) and a Scots pine (Pinus sylvestris L.) stand in Myrtillus full-drained swamp (MDS). The NNM flux was estimated using the in situ method with incubated polyethylene bags. The highest value of NNM was found in stands that were growing on fertile ODS: 127.5 kg N ha–1 yr–1 and 87.7 kg N ha–1 yr–1, in the downy birch stand and in the Norway spruce stand, respectively. A significantly lower annual NNM flux (11.8 kg N ha–1 yr–1) occurred in the Scots pine stand growing in MDS. Nitrification was highest at fertile ODS sites and ammonification was the highest at the low fertility MDS site. For all study sites, positive correlation was found between soil temperature and NNM intensity. The difference in annual NNM between the downy birch stand and the Norway spruce stand growing on similar drained fertile peatlands was due to litter quality. The annual N input into the soil through leaf litter was the highest at the downy birch site where also the C/N ratio of litter was the lowest. The second highest N input into the soil was found in the spruce stand and the lowest in the pine stand.